A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Overview

Panoptic Mapping

This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based approach that leverages panoptic scene understanding towards adaptive spatio-temporally consistent volumetric mapping, as well as regular, monolithic semantic mapping.

combined

Multi-resolution 3D Reconstruction, active and inactive panoptic submaps for temporal consistency, online change detection, and more.

Table of Contents

Credits

Setup

Examples

Other

Paper

If you find this package useful for your research, please consider citing our paper:

  • Lukas Schmid, Jeffrey Delmerico, Johannes Schönberger, Juan Nieto, Marc Pollefeys, Roland Siegwart, and Cesar Cadena. "Panoptic Multi-TSDFs: a Flexible Representation for Online Multi-resolution Volumetric Mapping and Long-term Dynamic Scene Consistency" arXiv preprint arXiv:2109.10165 (2021). [ArXiv]
    @ARTICLE{schmid2021panoptic,
      title={Panoptic Multi-TSDFs: a Flexible Representation for Online Multi-resolution Volumetric Mapping and Long-term Dynamic Scene Consistency},
      author={Schmid, Lukas and Delmerico, Jeffrey and Sch{\"o}nberger, Johannes and Nieto, Juan and Pollefeys, Marc and Siegwart, Roland and Cadena, Cesar},
      journal={arXiv preprint arXiv:2109.10165},
      year={2021}
    }

Video

A short video overview explaining the approach will be released upon publication.

Installation

Installation instructions for Linux. The repository was developed on Ubuntu 18.04 with ROS melodic and also tested on Ubuntu 20.04 with ROS noetic.

Prerequisites

  1. If not already done so, install ROS (Desktop-Full is recommended).

  2. If not already done so, create a catkin workspace with catkin tools:

    # Create a new workspace
    sudo apt-get install python-catkin-tools
    mkdir -p ~/catkin_ws/src
    cd ~/catkin_ws
    catkin init
    catkin config --extend /opt/ros/$ROS_DISTRO
    catkin config --cmake-args -DCMAKE_BUILD_TYPE=RelWithDebInfo
    catkin config --merge-devel

Installation

  1. Install system dependencies:

    sudo apt-get install python-wstool python-catkin-tools
  2. Move to your catkin workspace:

    cd ~/catkin_ws/src
  3. Download repo using SSH:

    git clone [email protected]:ethz-asl/panoptic_mapping.git
  4. Download and install package dependencies using ros install:

    • If you created a new workspace.
    wstool init . ./panoptic_mapping/panoptic_mapping.rosinstall
    wstool update
    • If you use an existing workspace. Notice that some dependencies require specific branches that will be checked out.
    wstool merge -t . ./panoptic_mapping/panoptic_mapping.rosinstall
    wstool update
  5. Compile and source:

    catkin build panoptic_mapping_utils
    source ../devel/setup.bash

Datasets

The datasets described in the paper and used for the demo can be downloaded from the ASL Datasets.

To a utility script is provided to directly download the data:

roscd panoptic_mapping_utils
export FLAT_DATA_DIR="/home/$USER/Documents"  # Or whichever path you prefer.
chmod +x panoptic_mapping_utils/scripts/download_flat_dataset.sh
./panoptic_mapping_utils/scripts/download_flat_dataset.sh

Additional data to run the mapper on the 3RScan dataset will follow.

Examples

Running the Panoptic Mapper

This example explains how to run the Panoptic Multi-TSDF mapper on the flat dataset.

  1. First, download the flat dataset:

    export FLAT_DATA_DIR="/home/$USER/Documents"  # Or whichever path you prefer.
    chmod +x panoptic_mapping_utils/scripts/download_flat_dataset.sh
    ./panoptic_mapping_utils/scripts/download_flat_dataset.sh
    
  2. Replace the data base_path in launch/run.launch (L10) and file_name in config/mapper/flat_groundtruth.yaml (L15) to the downloaded path.

  3. Run the mapper:

    roslaunch panoptic_mapping_ros run.launch
    
  4. You should now see the map being incrementally built:

  5. After the map finished building, you can save the map:

    rosservice call /panoptic_mapper/save_map "file_path: '/path/to/run1.panmap'" 
    
  6. Terminate the mapper pressing Ctrl+C. You can continue the experiment on run2 of the flat dataset by changing the base_path-ending in launch/run.launch (L10) to run2, and load_map and load_path in launch/run.launch (L26-27) to true and /path/to/run1.panmap, respectively. Optionally, you can also change the color_mode in config/mapper/flat_groundtruth.yaml (L118) to change to better highlight the change detection at work.

    roslaunch panoptic_mapping_ros run.launch
    
  7. You should now see the map being updated based on the first run:

Monolithic Semantic Mapping

This example will follow shortly.

Running the RIO Dataset

This example will follow shortly.

Contributing

panoptic_mapping is an open-source project, any contributions are welcome!

For issues, bugs, or suggestions, please open a GitHub Issue.

To add to this repository:

  • Please employ the feature-branch workflow.
  • Setup our auto-formatter for coherent style (we follow the google style guide):
    # Download the linter
    cd <linter_dest>
    git clone [email protected]:ethz-asl/linter.git
    cd linter
    echo ". $(realpath setup_linter.sh)" >> ~/.bashrc
    bash
    roscd panoptic_mapping/..
    init_linter_git_hooks
    # You're all set to go!
    
  • Please open a Pull Request for your changes.
  • Thank you for contributing!
Owner
ETHZ ASL
ETHZ ASL
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU

zichengsaber 60 Dec 11, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Madirex 1 Feb 15, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
Categorical Depth Distribution Network for Monocular 3D Object Detection

CaDDN CaDDN is a monocular-based 3D object detection method. This repository is based off of [OpenPCDet]. Categorical Depth Distribution Network for M

Toronto Robotics and AI Laboratory 289 Jan 05, 2023
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022