Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

Overview

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs

Directory Structure

data/ --> data folder including splits we use for FEVER, zsRE, Wikidata5m, and LeapOfThought
training_reports/ --> folder to be populated with individual training run reports produced by main.py
result_sheets/ --> folder to be populated with .csv's of results from experiments produced by main.py
aggregated_results/ --> contains combined experiment results produced by run_jobs.py
outputs/ --> folder to be populated with analysis results, including belief graphs and bootstrap outputs
models/ --> contains model wrappers for Huggingface models and the learned optimizer code
data_utils/ --> contains scripts for making all datasets used in paper
main.py --> main script for all individual experiments in the paper
metrics.py --> functions for calculing metrics reported in the paper
utils.py --> data loading and miscellaneous utilities
run_jobs.py --> script for running groups of experiments
statistical_analysis.py --> script for running bootstraps with the experimental results
data_analysis.Rmd --> R markdown file that makes plots using .csv's in result_sheets
requirements.txt --> contains required packages

Requirements

The code is compatible with Python 3.6+. data_analysis.Rmd is an R markdown file that makes all the plots in the paper.

The required packages can be installed by running:

pip install -r requirements.txt

If you wish to visualize belief graphs, you should also install a few packages as so:

sudo apt install python-pydot python-pydot-ng graphviz

Making Data

We include the data splits from the paper in data/ (though the train split for Wikidata5m is divided into two files that need to be locally combined.) To construct the datasets from scratch, you can follow a few steps:

  1. Set the DATA_DIR environment variable to where you'd like the data to be stored. Set the CODE_DIR to point to the directory where this code is.
  2. Run the following blocks of code

Make FEVER and ZSRE

cd $DATA_DIR
git clone https://github.com/facebookresearch/KILT.git
cd KILT
mkdir data
python scripts/download_all_kilt_data.py
mv data/* ./
cd $CODE_DIR
python data_utils/shuffle_fever_splits.py
python data_utils/shuffle_zsre_splits.py

Make Leap-Of-Thought

cd $DATA_DIR
git clone https://github.com/alontalmor/LeapOfThought.git
cd LeapOfThought
python -m LeapOfThought.run -c Hypernyms --artiset_module soft_reasoning -o build_artificial_dataset -v training_mix -out taxonomic_reasonings.jsonl.gz
gunzip taxonomic_reasonings_training_mix_train.jsonl.gz taxonomic_reasonings_training_mix_dev.jsonl.gz taxonomic_reasonings_training_mix_test.jsonl.gz taxonomic_reasonings_training_mix_meta.jsonl.gz
cd $CODE_DIR
python data_utils/shuffle_leapofthought_splits.py

Make Wikidata5m

cd $DATA_DIR
mkdir Wikidata5m
cd Wikidata5m
wget https://www.dropbox.com/s/6sbhm0rwo4l73jq/wikidata5m_transductive.tar.gz
wget https://www.dropbox.com/s/lnbhc8yuhit4wm5/wikidata5m_alias.tar.gz
tar -xvzf wikidata5m_transductive.tar.gz
tar -xvzf wikidata5m_alias.tar.gz
cd $CODE_DIR
python data_utils/filter_wikidata.py

Experiment Replication

Experiment commands require a few arguments: --data_dir points to where the data is. --save_dir points to where models should be saved. --cache_dir points to where pretrained models will be stored. --gpu indicates the GPU device number. --seeds indicates how many seeds per condition to run. We give commands below for the experiments in the paper, saving everything in $DATA_DIR.

To train the task and prepare the necessary data for training learned optimizers, run:

python run_jobs.py -e task_model --seeds 5 --dataset all --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e write_LeapOfThought_preds --seeds 5 --dataset LeapOfThought --do_train false --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

To get the main experiments in a single-update setting, run:

python run_jobs.py -e learned_opt_main --seeds 5 --dataset all --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

For results in a sequential-update setting (with r=10) run:

python run_jobs.py -e learned_opt_r_main --seeds 5 --dataset all --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

To get the corresponding off-the-shelf optimizer baselines for these experiments, run

python run_jobs.py -e base_optimizers --seeds 5 --do_train false  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e base_optimizers_r_main --seeds 5 --do_train false  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

To get ablations across values of r for the learned optimizer and baselines, run

python run_jobs.py -e base_optimizers_r_ablation --seeds 1 --do_train false  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

Next we give commands for for ablations across k, the choice of training labels, the choice of evaluation labels, training objective terms, and a comparison to the objective from de Cao (in order):

python run_jobs.py -e learned_opt_k_ablation --seeds 1 --dataset ZSRE  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e learned_opt_label_ablation --seeds 1 --dataset ZSRE --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e learned_opt_eval_ablation --seeds 1 --dataset ZSRE  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e learned_opt_objective_ablation --seeds 1 --dataset all  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e learned_opt_de_cao --seeds 5 --dataset all --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

Analysis

Statistical Tests

After running an experiment from above, you can compute confidence intervals and hypothesis tests using statistical_analysis.py.

To get confidence intervals for the main single-update learned optimizer experiments, run

python statistical_analysis -e learned_opt_main -n 10000

To run hypothesis tests between statistics for the learned opt experiment and its baselines, run

python statistical_analysis -e learned_opt_main -n 10000 --hypothesis_tests true

You can substitute the experiment name for results for other conditions.

Belief Graphs

Add --save_dir, --cache_dir, and --data_dir arguments to the commands below per the instructions above.

Write preds from FEVER model:
python main.py --dataset FEVER --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --write_preds_to_file true

Write graph to file:
python main.py --dataset FEVER --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --test_batch_size 64 --update_eval_truthfully false --fit_to_alt_labels true --update_beliefs true --optimizer adamw --lr 1e-6 --update_steps 100 --update_all_points true --write_graph_to_file true --use_dev_not_test false --num_random_other 10444

Analyze graph:
python main.py --dataset FEVER --probing_style model --probe linear --model roberta-base --seed 0 --test_batch_size 64 --update_eval_truthfully false --fit_to_alt_labels true --update_beliefs true --use_dev_not_test false --optimizer adamw --lr 1e-6 --update_steps 100 --do_train false --do_eval false --pre_eval false --do_graph_analysis true

Combine LeapOfThought Main Inputs and Entailed Data:
python data_utils/combine_leapofthought_data.py

Write LeapOfThought preds to file:
python main.py --dataset LeapOfThought --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --write_preds_to_file true --leapofthought_main main

Write graph for LeapOfThought:
python main.py --dataset LeapOfThought --leapofthought_main main --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --test_batch_size 64 --update_eval_truthfully false --fit_to_alt_labels true --update_beliefs true --optimizer sgd --update_steps 100 --lr 1e-2 --update_all_points true --write_graph_to_file true --use_dev_not_test false --num_random_other 8642

Analyze graph (add --num_eval_points 2000 to compute update-transitivity):
python main.py --dataset LeapOfThought --leapofthought_main main --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --test_batch_size 64 --update_eval_truthfully false --fit_to_alt_labels true --update_beliefs true --optimizer sgd --update_steps 100 --lr 1e-2 --do_train false --do_eval false --pre_eval false --do_graph_analysis true

Plots

The data_analysis.Rmd R markdown file contains code for plots in the paper. It reads data from aggregated_results and saves plots in a ./figures directory.

Owner
Peter Hase
I am a PhD student in the UNC-NLP group at UNC Chapel Hill.
Peter Hase
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry

SynergyNet 3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry Cho-Ying Wu, Qiangeng Xu, Ulrich Neumann, CGIT Lab at Unive

Cho-Ying Wu 239 Jan 06, 2023
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022