Contrastive Learning Inverts the Data Generating Process

Overview

Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

3DIdent dataset example images

Experiments

To reproduce the disentanglement results for the MLP mixing, use the main_mlp.py script. For the experiments on KITTI Masks use the main_kitti.py script. For those on 3DIdent, use main_3dident.py.

MLP Mixing

> python main_mlp.py --help
usage: main_mlp.py
       [-h] [--sphere-r SPHERE_R] [--box-min BOX_MIN] [--box-max BOX_MAX]
       [--sphere-norm] [--box-norm] [--only-supervised] [--only-unsupervised]
       [--more-unsupervised MORE_UNSUPERVISED] [--save-dir SAVE_DIR]
       [--num-eval-batches NUM_EVAL_BATCHES] [--rej-mult REJ_MULT]
       [--seed SEED] [--act-fct ACT_FCT] [--c-param C_PARAM]
       [--m-param M_PARAM] [--tau TAU] [--n-mixing-layer N_MIXING_LAYER]
       [--n N] [--space-type {box,sphere,unbounded}] [--m-p M_P] [--c-p C_P]
       [--lr LR] [--p P] [--batch-size BATCH_SIZE] [--n-log-steps N_LOG_STEPS]
       [--n-steps N_STEPS] [--resume-training]

Disentanglement with InfoNCE/Contrastive Learning - MLP Mixing

optional arguments:
  -h, --help            show this help message and exit
  --sphere-r SPHERE_R
  --box-min BOX_MIN     For box normalization only. Minimal value of box.
  --box-max BOX_MAX     For box normalization only. Maximal value of box.
  --sphere-norm         Normalize output to a sphere.
  --box-norm            Normalize output to a box.
  --only-supervised     Only train supervised model.
  --only-unsupervised   Only train unsupervised model.
  --more-unsupervised MORE_UNSUPERVISED
                        How many more steps to do for unsupervised compared to
                        supervised training.
  --save-dir SAVE_DIR
  --num-eval-batches NUM_EVAL_BATCHES
                        Number of batches to average evaluation performance at
                        the end.
  --rej-mult REJ_MULT   Memory/CPU trade-off factor for rejection resampling.
  --seed SEED
  --act-fct ACT_FCT     Activation function in mixing network g.
  --c-param C_PARAM     Concentration parameter of the conditional
                        distribution.
  --m-param M_PARAM     Additional parameter for the marginal (only relevant
                        if it is not uniform).
  --tau TAU
  --n-mixing-layer N_MIXING_LAYER
                        Number of layers in nonlinear mixing network g.
  --n N                 Dimensionality of the latents.
  --space-type {box,sphere,unbounded}
  --m-p M_P             Type of ground-truth marginal distribution. p=0 means
                        uniform; all other p values correspond to (projected)
                        Lp Exponential
  --c-p C_P             Exponent of ground-truth Lp Exponential distribution.
  --lr LR
  --p P                 Exponent of the assumed model Lp Exponential
                        distribution.
  --batch-size BATCH_SIZE
  --n-log-steps N_LOG_STEPS
  --n-steps N_STEPS
  --resume-training

KITTI Masks

>python main_kitti.py --help
usage: main_kitti.py [-h] [--box-norm BOX_NORM] [--p P] [--experiment-dir EXPERIMENT_DIR] [--evaluate] [--specify SPECIFY] [--random-search] [--random-seeds] [--seed SEED] [--beta BETA] [--gamma GAMMA]
                     [--rate-prior RATE_PRIOR] [--data-distribution DATA_DISTRIBUTION] [--rate-data RATE_DATA] [--data-k DATA_K] [--betavae] [--search-beta] [--output-dir OUTPUT_DIR] [--log-dir LOG_DIR]
                     [--ckpt-dir CKPT_DIR] [--max-iter MAX_ITER] [--dataset DATASET] [--batch-size BATCH_SIZE] [--num-workers NUM_WORKERS] [--image-size IMAGE_SIZE] [--use-writer] [--z-dim Z_DIM] [--lr LR]
                     [--beta1 BETA1] [--beta2 BETA2] [--ckpt-name CKPT_NAME] [--log-step LOG_STEP] [--save-step SAVE_STEP] [--kitti-max-delta-t KITTI_MAX_DELTA_T] [--natural-discrete] [--verbose] [--cuda]
                     [--num_runs NUM_RUNS]

Disentanglement with InfoNCE/Contrastive Learning - KITTI Masks

optional arguments:
  -h, --help            show this help message and exit
  --box-norm BOX_NORM
  --p P
  --experiment-dir EXPERIMENT_DIR
                        specify path
  --evaluate            evaluate instead of train
  --specify SPECIFY     use argument to only compute a subset of metrics
  --random-search       whether to random search for params
  --random-seeds        whether to go over random seeds with UDR params
  --seed SEED           random seed
  --beta BETA           weight for kl to normal
  --gamma GAMMA         weight for kl to laplace
  --rate-prior RATE_PRIOR
                        rate (or inverse scale) for prior laplace (larger -> sparser).
  --data-distribution DATA_DISTRIBUTION
                        (laplace, uniform)
  --rate-data RATE_DATA
                        rate (or inverse scale) for data laplace (larger -> sparser). (-1 = rand).
  --data-k DATA_K       k for data uniform (-1 = rand).
  --betavae             whether to do standard betavae training (gamma=0)
  --search-beta         whether to do rand search over beta
  --output-dir OUTPUT_DIR
                        output directory
  --log-dir LOG_DIR     log directory
  --ckpt-dir CKPT_DIR   checkpoint directory
  --max-iter MAX_ITER   maximum training iteration
  --dataset DATASET     dataset name (dsprites, cars3d,smallnorb, shapes3d, mpi3d, kittimasks, natural
  --batch-size BATCH_SIZE
                        batch size
  --num-workers NUM_WORKERS
                        dataloader num_workers
  --image-size IMAGE_SIZE
                        image size. now only (64,64) is supported
  --use-writer          whether to use a log writer
  --z-dim Z_DIM         dimension of the representation z
  --lr LR               learning rate
  --beta1 BETA1         Adam optimizer beta1
  --beta2 BETA2         Adam optimizer beta2
  --ckpt-name CKPT_NAME
                        load previous checkpoint. insert checkpoint filename
  --log-step LOG_STEP   numer of iterations after which data is logged
  --save-step SAVE_STEP
                        number of iterations after which a checkpoint is saved
  --kitti-max-delta-t KITTI_MAX_DELTA_T
                        max t difference between frames sampled from kitti data loader.
  --natural-discrete    discretize natural sprites
  --verbose             for evaluation
  --cuda
  --num_runs NUM_RUNS   when searching over seeds, do 10

3DIdent

>python main_3dident.py --help
usage: main_3dident.py [-h] [--batch-size BATCH_SIZE] [--n-eval-samples N_EVAL_SAMPLES] [--lr LR] [--optimizer {adam,sgd}] [--iterations ITERATIONS]
                                                                   [--n-log-steps N_LOG_STEPS] [--load-model LOAD_MODEL] [--save-model SAVE_MODEL] [--save-every SAVE_EVERY] [--no-cuda] [--position-only]
                                                                   [--rotation-and-color-only] [--rotation-only] [--color-only] [--no-spotlight-position] [--no-spotlight-color] [--no-spotlight]
                                                                   [--non-periodic-rotation-and-color] [--dummy-mixing] [--identity-solution] [--identity-mixing-and-solution]
                                                                   [--approximate-dataset-nn-search] --offline-dataset OFFLINE_DATASET [--faiss-omp-threads FAISS_OMP_THREADS]
                                                                   [--box-constraint {None,fix,learnable}] [--sphere-constraint {None,fix,learnable}] [--workers WORKERS]
                                                                   [--mode {supervised,unsupervised,test}] [--supervised-loss {mse,r2}] [--unsupervised-loss {l1,l2,l3,vmf}]
                                                                   [--non-periodical-conditional {l1,l2,l3}] [--sigma SIGMA] [--encoder {rn18,rn50,rn101,rn151}]

Disentanglement with InfoNCE/Contrastive Learning - 3DIdent

optional arguments:
  -h, --help            show this help message and exit
  --batch-size BATCH_SIZE
  --n-eval-samples N_EVAL_SAMPLES
  --lr LR
  --optimizer {adam,sgd}
  --iterations ITERATIONS
                        How long to train the model
  --n-log-steps N_LOG_STEPS
                        How often to calculate scores and print them
  --load-model LOAD_MODEL
                        Path from where to load the model
  --save-model SAVE_MODEL
                        Path where to save the model
  --save-every SAVE_EVERY
                        After how many steps to save the model (will always be saved at the end)
  --no-cuda
  --position-only
  --rotation-and-color-only
  --rotation-only
  --color-only
  --no-spotlight-position
  --no-spotlight-color
  --no-spotlight
  --non-periodic-rotation-and-color
  --dummy-mixing
  --identity-solution
  --identity-mixing-and-solution
  --approximate-dataset-nn-search
  --offline-dataset OFFLINE_DATASET
  --faiss-omp-threads FAISS_OMP_THREADS
  --box-constraint {None,fix,learnable}
  --sphere-constraint {None,fix,learnable}
  --workers WORKERS     Number of workers to use (0=#cpus)
  --mode {supervised,unsupervised,test}
  --supervised-loss {mse,r2}
  --unsupervised-loss {l1,l2,l3,vmf}
  --non-periodical-conditional {l1,l2,l3}
  --sigma SIGMA         Sigma of the conditional distribution (for vMF: 1/kappa)
  --encoder {rn18,rn50,rn101,rn151}

3DIdent Dataset

We introduce 3Dident, a dataset with hallmarks of natural environments (shadows, different lighting conditions, 3D rotations, etc.). A preliminary version of the dataset is released along with our pre-print.

3DIdent dataset example images

You can access the dataset here. The training and test datasets consists of 250000 and 25000 samples, respectively. To load, you can use the ThreeDIdentDataset class defined in datasets/threedident_dataset.py.

BibTeX

If you find our analysis helpful, please cite our pre-print:

@article{zimmermann2021cl,
  author = {
    Zimmermann, Roland S. and
    Sharma, Yash and
    Schneider, Steffen and
    Bethge, Matthias and
    Brendel, Wieland
  },
  title = {
    Contrastive Learning Inverts the Data Generating Process
  },
  journal = {CoRR},
  volume = {abs/2102.08850},
  year = {2021},
}
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Zhengxia Zou 1.5k Dec 28, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

BabelCalib: A Universal Approach to Calibrating Central Cameras This repository contains the MATLAB implementation of the BabelCalib calibration frame

Yaroslava Lochman 55 Dec 30, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022