A library for uncertainty quantification based on PyTorch

Overview

Torchuq [logo here]

TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representations for uncertainty, and around 50 different methods for uncertainty evaluation and visualization, calibration and conformal prediction.

Why TorchUQ

TorchUQ is a one-stop solution for uncertainty quantification (UQ).

Accurate uncertainty quantification (UQ) is extremely important in high-stakes applications such as autonomous driving, healthcare, and public policy --- prediction models in such applications should know what they do not know. UQ also finds numerous applications in active learning, statistical inference, or in natural science and engineering applications that are rife with sources of uncertainty.

For practitioners

Torchuq aims to provide an easy to use arsenal of uncertainty quantification methods. Torchuq is designed for the following benefits:

Plug and Play: Simple unified interface to access a large arsenal of UQ methods.

Built on PyTorch: Native GPU & auto-diff support, seamless integration with deep learning pipelines.

Documentation: Detailed tutorial to walk through popular UQ algorithms. Extensive documentation.

Extensive and Extensible: Supports calibration, conformal, multi-calibration and forecast evaluation. Easy to add new methods.

For researchers

Torchuq aims to provide a easy to use platform for conducting and distributing research on uncertainty quantification. Torchuq is designed for the following benefits:

Baseline implementation: TorchUQ provides high quality implementation of many popular baseline methods to standardize comparison.

Benchmark datasets: a large set of datasets used in recent UQ papers with a one-line interface to retrieve these datasets.

Distribute your research: you are welcome to distribute your algorithm via the TorchUQ interface. For details see [link].

Installation

First download the torchuq from pypi. To run the code, you can install the dependencies with the follwoing command

pip3 install requirements

pypi package link to come

Quickstart

import torchuq
from torchuq.evaluate import distribution 
from torchuq.transform.conformal import ConformalCalibrator 
from torchuq.dataset import create_example_regression  

In this very simple example, we create a synthetic prediction (which is a set of Gaussian distributions) and recalibrate them with conformal calibration.

predictions, labels = create_example_regression()

The example predictions are intentially incorrect (i.e. the label is not drawn from the predictions). We will recalibrate the distribution with a powerful recalibration algorithm called conformal calibration. It takes as input the predictions and the labels, and learns a recalibration map that can be applied to new data (here for illustration purposes we apply it to the original data).

calibrator = ConformalCalibrator(input_type='distribution', interpolation='linear')
calibrator.train(predictions, labels)
adjusted_predictions = calibrator(predictions)

We can plot these distribution predictions as a sequence of density functions, and the labels as the cross-shaped markers. As shown by the plot, the original predictions have systematically incorrect variance and mean, which is fixed by the recalibration algorithm.

distribution.plot_density_sequence(predictions, labels, smooth_bw=10)
distribution.plot_density_sequence(adjusted_predictions, labels, smooth_bw=10)

plot_original plot_calibrate

What's Next?

A good way to start is to read about the basic design philosophy and usage of the package, then go through these tutorials. All the tutorials are interactive jupyter notebooks. You can either download them to run locally or view them here.

Owner
TorchUQ
TorchUQ
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
Fast, Attemptable Route Planner for Navigation in Known and Unknown Environments

FAR Planner uses a dynamically updated visibility graph for fast replanning. The planner models the environment with polygons and builds a global visi

Fan Yang 346 Dec 30, 2022
This repo is about implementing different approaches of pose estimation and also is a sub-task of the smart hospital bed project :smile:

Pose-Estimation This repo is a sub-task of the smart hospital bed project which is about implementing the task of pose estimation 😄 Many thanks to th

Max 11 Oct 17, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022