Fast, Attemptable Route Planner for Navigation in Known and Unknown Environments

Overview

FAR Planner uses a dynamically updated visibility graph for fast replanning. The planner models the environment with polygons and builds a global visibility graph along with the navigation. The planner is capable of handling both known and unknown environments. In a known environment, paths are planned based on a prior map. In an unknown environment, multiple paths are attempted to guide the vehicle to goal based on the environment observed during the navigation. When dynamic obstacles are present, FAR Planner disconnects visibility edges blocked by the dynamic obstacles and reconnects them after regaining visibility. The software implementation uses two CPU threads - one for dynamically updating the visibility graph using ~20% of the thread and the other for path search that can find a path within 3ms, as evaluated on an i7 computer.

FAR Planner was used by the CMU-OSU Team in attending DARPA Subterranean Challenge. In the final competition which took place in Louisville Mega Cavern, KY, the team's robots conducted the most complete traversing and mapping across the site (26 out of 28 sectors) among all teams, winning a "Most Sectors Explored Award".

A video showing functionalities of FAR Planner is available.

Method

Usage

The repository has been tested in Ubuntu 18.04 with ROS Melodic and Ubuntu 20.04 with ROS Noetic. Follow instructions in Autonomous Exploration Development Environment to setup the development environment. Make sure to checkout the branch that matches the computer setup, compile, and download the simulation environments.

To setup FAR Planner, clone the repository.

git clone https://github.com/MichaelFYang/far_planner

In a terminal, go to the folder and compile.

cd far_planner
catkin_make

To run the code, go to the development environment folder in a terminal, source the ROS workspace, and launch.

source devel/setup.sh
roslaunch vehicle_simulator system_indoor.launch

In another terminal, go to the FAR Planner folder, source the ROS workspace, and launch.

source devel/setup.sh
roslaunch far_planner far_planner.launch

Now, users can send a goal by pressing the 'Goalpoint' button in RVIZ and then clicking a point to set the goal. The vehicle will navigate to the goal and build a visibility graph (in cyan) along the way. Areas covered by the visibility graph become free space. When navigating in free space, the planner uses the built visibility graph, and when navigating in unknown space, the planner attempts to discover a way to the goal. By pressing the 'Reset Visibility Graph' button, the planner will reinitialize the visibility graph. By unchecking the 'Planning Attemptable' checkbox, the planner will first try to find a path through the free space. The path will show in green. If such a path does not exist, the planner will consider unknown space together. The path will show in blue. By unchecking the 'Update Visibility Graph' checkbox, the planner will stop updating the visibility graph. To read/save the visibility graph from/to a file, press the 'Read'/'Save' button. An example visibility graph file for indoor environment is available at 'src/far_planner/data/indoor.vgh'.

Indoor

Anytime during the navigation, users can use the control panel to navigate the vehicle by clicking the in the black box. The system will switch to smart joystick mode - the vehicle tries to follow the virtual joystick command and avoid collisions at the same time. To resume FAR planner navigation, press the 'Resume Navigation to Goal' button or use the 'Goalpoint' button to set a new goal. Note that users can use a PS3/4 or Xbox controller instead of the virtual joystick. For more information, please refer to our development environment page.

ControlPanel     PS3 Controller

To launch with a different environment, use the command lines below and replace '<environment>' with one of the environment names in the development environment, i.e. 'campus', 'indoor', 'garage', 'tunnel', and 'forest'.

roslaunch vehicle_simulator system_<environment>.launch
roslaunch far_planner far_planner.launch

To run FAR Planner in a Matterport3D environment, follow instructions on the development environment page to setup the Matterport3D environment. Then, use the command lines below to launch the system and FAR Planner.

roslaunch vehicle_simulator system_matterport.launch
roslaunch far_planner far_planner.launch config:=matterport

Matterport

Configuration

FAR planner settings are kept in default.yaml in the 'src/far_planner/config' folder. For Matterport3D environments, the settings are in matterport.yaml in the same folder.

  • is_static_env (default: true) - set to false if the environment contains dynamic obstacles.

Todo

  • The current implementation does not support multi-floor environments. The environment can be 3D but needs to be single floored. An upgrade is planned for multi-floor environment support.

Reference

  • F. Yang, C. Cao, H. Zhu, J. Oh, and J. Zhang. FAR Planner: Fast, Attemptable Route Planner using Dynamic Visibility Update. Submitted in 2021.

Author

Fan Yang ([email protected])

Credit

Eigen: a lightweight C++ template library for linear algebra.

Owner
Fan Yang
Fan Yang
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

129 Jan 04, 2023
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
Curating a dataset for bioimage transfer learning

CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio

Stanley Z. Hua 9 Jun 20, 2022
Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Wilson 1.7k Dec 30, 2022
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

๐ŸŒˆ ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
โš“ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo ยท Documentation ยท Medium article ๐Ÿ” Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023