A no-BS, dead-simple training visualizer for tf-keras

Overview


A no-BS, dead-simple training visualizer for tf-keras
PyPI version PyPI version

TrainingDashboard

Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook with a simple callback. Features:

  • Plots the training loss and a training metric, updated at the end of each batch
  • Plots training and validation losses, updated at the end of each epoch
  • For each metric, plots training and validation values, updated at the end of each epoch
  • Tabulates losses and metrics (both train and validation) and highlights the highest and lowest values in each column

Why should I use this over tensorboard?
This is way simpler to use.

What about livelossplot?
AFAIK, livelossplot does not support intra-epoch loss/metric plotting. Also, TrainingDashboard uses bqplot for plotting, which provides support for much more interactive elements like tooltips (currently a TODO). On the other hand, livelossplot is a much more mature project, and you should use it if you have a specific use case.

Installation

TrainingDashboard can be installed from PyPI with the following command:

pip install training-dashboard

Alternatively, you can clone this repository and run the following command from the root directory:

pip install .

Usage

TrainingDashboard is a tf-keras callback and should be used as such. It takes the following optional arguments:

  • validation (bool): whether validation data is being used or not
  • min_loss (float): the minimum possible value of the loss function, to fix the lower bound of the y-axis
  • max_loss (float): the maximum possible value of the loss function, to fix the upper bound of the y-axis
  • metrics (list): list of metrics that should be considered for plotting
  • min_metric_dict (dict): dictionary mapping each (or a subset) of the metrics to their minimum possible value, to fix the lower bound of the y-axis
  • max_metric_dict (dict): dictionary mapping each (or a subset) of the metrics to their maximum possible value, to fix the upper bound of the y-axis
  • batch_step (int): step size for plotting the results within each epoch. If the time to process each batch is very small, plotting at each step may cause the training to slow down significantly. In such cases, it is advisable to skip a few batches between each update.
from training_dashboard import TrainingDashboard
model.fit(X,
          Y,
          epochs=10,
          callbacks=[TrainingDashboard()])

or, a more elaborate example:

from training_dashboard import TrainingDashboard
dashboard = TrainingDashboard(validation=True, # because we are using validation data and want to track its metrics
                             min_loss=0, # we want the loss axes to be fixed on the lower end
                             metrics=["accuracy", "auc"], # metrics that we want plotted
                             batch_step=10, # plot every 10th batch
                             min_metric_dict={"accuracy": 0, "auc": 0}, # minimum possible value for metrics used
                             max_metric_dict={"accuracy": 1, "auc": 1}) # maximum possible value for metrics used
model.fit(x_train,
          y_train,
          batch_size=512,
          epochs=25,
          verbose=1,
          validation_split=0.2,
          callbacks=[dashboard])

For a more detailed example, check mnist_example.ipynb inside the examples folder.

Support

Reach out to me at one of the following places!

Twitter: @vibhuagrawal
Email: vibhu[dot]agrawal14[at]gmail

License

Project is distributed under MIT License.

Owner
Vibhu Agrawal
Vibhu Agrawal
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
face2comics by Sxela (Alex Spirin) - face2comics datasets

This is a paired face to comics dataset, which can be used to train pix2pix or similar networks.

Alex 164 Nov 13, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Deep Halftoning with Reversible Binary Pattern

Deep Halftoning with Reversible Binary Pattern ICCV Paper | Project Website | BibTex Overview Existing halftoning algorithms usually drop colors and f

Menghan Xia 17 Nov 22, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
BERT model training impelmentation using 1024 A100 GPUs for MLPerf Training v1.1

Pre-trained checkpoint and bert config json file Location of checkpoint and bert config json file This MLCommons members Google Drive location contain

SAIT (Samsung Advanced Institute of Technology) 12 Apr 27, 2022
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022