Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound"

Overview

merlot_reserve

Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound"

MERLOT Reserve (in submission) is a model for learning joint representations of vision, language, and sound from YouTube. The learned model can be used in a zero-shot or finetuned setting, where it does well on tasks like VCR and TVQA.

Visit our project page at rowanzellers.com/merlotreserve or read the full paper to learn more.

What's here

We are releasing the following:

  • JAX code, and model checkpoints, for the MERLOT model
  • Code for pretraining the model
  • Code for finetuning the model on VCR and TVQA
  • Code for doing zero-shot inference with the model

Environment and setup

There are two different ways to run MERLOT Reserve:

  • Pretraining on videos You'll need a TPU Pod VM for this. This step shouldn't be necessary for most people, as we have released model checkpoints.
  • Finetuning on VCR or TVQA I've done this on a TPU v3-8 VM. This should be possible on GPU(s), but I haven't tested this on such hardware.
  • Zero-shot inference I've ran this on a GPU (even an older, Titan X from 2016 works.)

Installation on a GPU Machine

Install Cuda 11.4 (I used this link) and CUDNN 8.2. You might have to add something like this to your PATH:

export LD_LIBRARY_PATH=/usr/local/cuda/lib64

Create the environment:

conda create --name mreserve python=3.8 && conda activate mreserve
conda install -y python=3.8 tqdm numpy pyyaml scipy ipython cython typing h5py pandas matplotlib

# Install jax
pip install jax[cuda11_cudnn82] -f https://storage.googleapis.com/jax-releases/jax_releases.html
# If doing this on TPUs instead of locally...
# pip install "jax[tpu]>=0.2.18" -f https://storage.googleapis.com/jax-releases/libtpu_releases.html

# This is needed sometimes https://stackoverflow.com/questions/66060487/valueerror-numpy-ndarray-size-changed-may-indicate-binary-incompatibility-exp
pip uninstall numpy
pip install numpy==1.19.5

pip install -r requirements.txt

You can then try out the interactive script at demo/demo_video.py. It will handle downloading the model checkpoint for you.

Installation on a Cloud TPU VM

See the instructions in pretrain/ to set up your environment on a TPU v3-8 VM.

Checkpoints

These should get auto-downloaded if you use PretrainedMerlotReserve in mreserve/modeling.py. All are flax checkpoint files:

# pretrained checkpoints
gs://merlotreserve/ckpts/base
gs://merlotreserve/ckpts/base_resadapt
gs://merlotreserve/ckpts/large
gs://merlotreserve/ckpts/large_resadapt

# finetuned checkpoints
gs://merlotreserve/vcr_ckpts/vcr_finetune_base
gs://merlotreserve/vcr_ckpts/vcr_finetune_large

gs://merlotreserve/tvqa_ckpts/tvqa_finetune_base
gs://merlotreserve/tvqa_ckpts/tvqa_finetune_large

# TVQA Data
gs://merlotreserve/finetune_data/tvqa/

# VCR data
gs://merlotreserve/finetune_data/vcr/
Owner
Rowan Zellers
Rowan Zellers
Official repository for "Orthogonal Projection Loss" (ICCV'21)

Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page

Kanchana Ranasinghe 83 Dec 26, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
Official Implementation for Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation We present a generic image-to-image translation framework, pixel2style2pixel (pSp

2.8k Dec 30, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji

372 Dec 26, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation) Usage example python dynamic_inverted_softmax.py --sims_train

36 Dec 29, 2022
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 03, 2022
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022