Meli Data Challenge 2021 - First Place Solution

Overview

Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021, first place in both public and private leaderboards.

The Model

My final model is an ensemble combining recurrent neural networks and XGBoost regressors. Neural networks are trained to predict the stock days probability distribution using the RPS as loss function. XGBoost regressors are trained to predict stock days using different objectives, here the intuition behind this:

  • MSE loss: the regressor trained with this loss will output values close to the expected mean.
  • Pseudo-Huber loss: an alternative for the MAE loss, this regressor outputs values close to the expected median.
  • Quantile loss: 11 regressors are trained using a quantile loss with alpha 0, 0.1, 0.2, ..., 1. This helps to build the final probability distribution.

The outputs of all these level-0 models are concatenated to train a feedforward neural network with the RPS as loss function.

diagram

The last 30 days of the train dataset are used to generate the labels and the target stock input. The remaining 29 days are used to generate the time series input.

The train/validation split is done at a sku level:

  • For level-0 models: 450000 sku's are used for training and the rest for validation.
  • For the level-1 model: the sku's used for training level-0 models are removed from the dataset and the remaining sku's are split again into train/validation.

Once all models are trained, the last 29 days of the train dataset and the provided target stock values are used as input to generate the submission.

Disclaimer: the entire solution lacks some fine tuning since I came up with this little ensemble monster towards the end of the competition. I didn't have the time to fine-tune each model (there are technically 16 models to tune if we consider each quantile regressor as an independent model).

How to run the solution

Requirements

  • TensorFlow v2.
  • Pandas.
  • Numpy.
  • Scikit-learn.

CUDA drivers and a CUDA-compatible GPU is required (I didn't have the time to test this on a CPU).

Some scripts require up to 30GB of RAM (again, I didn't have the time to implement a more memory-efficient solution).

The solution was tested on Ubuntu 20.04 with Python 3.8.10.

Downloading the dataset

Download the dataset files from https://ml-challenge.mercadolibre.com/downloads and put them into the dataset/ directory.

On linux, you can do that by running:

cd dataset && wget \
https://meli-data-challenge.s3.amazonaws.com/2021/test_data.csv \
https://meli-data-challenge.s3.amazonaws.com/2021/train_data.parquet \
https://meli-data-challenge.s3.amazonaws.com/2021/items_static_metadata_full.jl

Running the scripts

All-in-one script

A convenient script to run the entire solution is provided:

cd src
./run-solution.sh

Note: the entire process may take more than 3 hours to run.

Step by step

If you find trouble running the al-in-one script, you can run the solution step by step following the instructions bellow:

cd into the src directory:

cd src

Extract time series from the dataset:

python3 ./preprocessing/extract-time-series.py

Generate a supervised learning dataset:

python3 ./preprocessing/generate-sl-dataset.py

Train all level-0 models:

python3 ./train-all.py

Train the level-1 ensemble:

python3 ./train-ensemble.py

Generate the submission file and gzip it:

python3 ./generate-submission.py && gzip ./submission.csv

Utility scripts

The training_scripts directory contains some scripts to train each model separately, example usage:

python3 ./training_scripts/train-lstm.py
Owner
Matias Moreyra
Electronics Engineer, Software Developer.
Matias Moreyra
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
Facebook AI Image Similarity Challenge: Descriptor Track

Facebook AI Image Similarity Challenge: Descriptor Track This repository contains the code for our solution to the Facebook AI Image Similarity Challe

Sergio MP 17 Dec 14, 2022
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
Official Repository for our ECCV2020 paper: Imbalanced Continual Learning with Partitioning Reservoir Sampling

Imbalanced Continual Learning with Partioning Reservoir Sampling This repository contains the official PyTorch implementation and the dataset for our

Chris Dongjoo Kim 40 Sep 18, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build

simple, elegant and safe Introduction PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to ha

Johnsz 2 Mar 02, 2022
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Erik Linder-Norén 6.9k Dec 29, 2022
CAUSE: Causality from AttribUtions on Sequence of Events

CAUSE: Causality from AttribUtions on Sequence of Events

Wei Zhang 21 Dec 01, 2022
Cleaned up code for DSTC 10: SIMMC 2.0 track: subtask 2: multimodal coreference resolution

UNITER-Based Situated Coreference Resolution with Rich Multimodal Input: arXiv MMCoref_cleaned Code for the MMCoref task of the SIMMC 2.0 dataset. Pre

Yichen (William) Huang 2 Dec 05, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022