Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Overview

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Update (September 18th, 2021)

A supporting document describing the difference between transfer learning, incremental learning, domain adaptation, and the proposed incremental cross-domain adaptation approach has been uploaded in this repository.

Update (August 15th, 2021)

Blind Testing Dataset has been released.

Introduction

This repository contains an implementation of the continual learning loss function (driven via Bayesian inference) to penalize the deep classification networks for incrementally learning the diverse ranging classification tasks across various domain shifts.

CL

Installation

To run the codebase, please download and install Anaconda (also install MATLAB R2020a with deep learning, image processing and computer vision toolboxes). Afterward, please import the ‘environment.yml’ or alternatively install following packages:

  1. Python 3.7.9
  2. TensorFlow 2.1.0 (CUDA compatible GPU needed for GPU training)
  3. Keras 2.3.0 or above
  4. OpenCV 4.2
  5. Imgaug 0.2.9 or above
  6. Tqdm
  7. Pandas
  8. Pillow 8.2.0

Both Linux and Windows OS are supported.

Datasets

The datasets used in the paper can be downloaded from the following URLs:

  1. Rabbani
  2. BIOMISA
  3. Zhang
  4. Duke-I
  5. Duke-II
  6. Duke-III
  7. Blind Testing Dataset

The datasets description file is also uploaded here. Moreover, please follow the same steps as mentioned below to prepare the training and testing data. These steps are also applicable for any custom dataset. Please note that in this research, the disease severity within the scans of all the above-mentioned datasets are marked by multiple expert ophthalmologists. These annotations are also released publicly in this repository.

Dataset Preparation

  1. Download the desired data and put the training images in '…\datasets\trainK' folder (where K indicates the iteration).
  2. The directory structure is given below:
├── datasets
│   ├── test
│   │   └── test_image_1.png
│   │   └── test_image_2.png
│   │   ...
│   │   └── test_image_n.png
│   ├── train1
│   │   └── train_image_1.png
│   │   └── train_image_2.png
│   │   ...
│   │   └── train_image_m.png
│   ├── train2
│   │   └── train_image_1.png
│   │   └── train_image_2.png
│   │   ...
│   │   └── train_image_j.png
│   ...
│   ├── trainK
│   │   └── train_image_1.png
│   │   └── train_image_2.png
│   │   ...
│   │   └── train_image_o.png

Training and Testing

  1. Use ‘trainer.py’ to train the chosen model incrementally. After each iteration, the learned representations are saved in a h5 file.
  2. After training the model instances, use ‘tester.py’ to generate the classification results.
  3. Use ‘confusionMatrix.m’ to view the obtained results.

Results

The detailed results of the proposed framework on all the above-mentioned datasets are stored in the 'results.mat' file.

Citation

If you use the proposed scheme (or any part of this code in your research), please cite the following paper:

@inproceedings{BayesianIDA,
  title   = {Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning},
  author  = {Taimur Hassan and Bilal Hassan and Muhammad Usman Akram and Shahrukh Hashmi and Abdul Hakeem and Naoufel Werghi},
  note = {IEEE Transactions on Instrumentation and Measurement},
  year = {2021}
}

Contact

If you have any query, please feel free to contact us at: [email protected].

Owner
Taimur Hassan
Taimur Hassan
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
A collection of easy-to-use, ready-to-use, interesting deep neural network models

Interesting and reproducible research works should be conserved. This repository wraps a collection of deep neural network models into a simple and un

Aria Ghora Prabono 16 Jun 16, 2022
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal

Zhuo Wang 53 Dec 17, 2022
Rohit Ingole 2 Mar 24, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
Tensorflow implementation of soft-attention mechanism for video caption generation.

SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio

Paul Chen 153 Nov 14, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022