Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Overview

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Update (September 18th, 2021)

A supporting document describing the difference between transfer learning, incremental learning, domain adaptation, and the proposed incremental cross-domain adaptation approach has been uploaded in this repository.

Update (August 15th, 2021)

Blind Testing Dataset has been released.

Introduction

This repository contains an implementation of the continual learning loss function (driven via Bayesian inference) to penalize the deep classification networks for incrementally learning the diverse ranging classification tasks across various domain shifts.

CL

Installation

To run the codebase, please download and install Anaconda (also install MATLAB R2020a with deep learning, image processing and computer vision toolboxes). Afterward, please import the ‘environment.yml’ or alternatively install following packages:

  1. Python 3.7.9
  2. TensorFlow 2.1.0 (CUDA compatible GPU needed for GPU training)
  3. Keras 2.3.0 or above
  4. OpenCV 4.2
  5. Imgaug 0.2.9 or above
  6. Tqdm
  7. Pandas
  8. Pillow 8.2.0

Both Linux and Windows OS are supported.

Datasets

The datasets used in the paper can be downloaded from the following URLs:

  1. Rabbani
  2. BIOMISA
  3. Zhang
  4. Duke-I
  5. Duke-II
  6. Duke-III
  7. Blind Testing Dataset

The datasets description file is also uploaded here. Moreover, please follow the same steps as mentioned below to prepare the training and testing data. These steps are also applicable for any custom dataset. Please note that in this research, the disease severity within the scans of all the above-mentioned datasets are marked by multiple expert ophthalmologists. These annotations are also released publicly in this repository.

Dataset Preparation

  1. Download the desired data and put the training images in '…\datasets\trainK' folder (where K indicates the iteration).
  2. The directory structure is given below:
├── datasets
│   ├── test
│   │   └── test_image_1.png
│   │   └── test_image_2.png
│   │   ...
│   │   └── test_image_n.png
│   ├── train1
│   │   └── train_image_1.png
│   │   └── train_image_2.png
│   │   ...
│   │   └── train_image_m.png
│   ├── train2
│   │   └── train_image_1.png
│   │   └── train_image_2.png
│   │   ...
│   │   └── train_image_j.png
│   ...
│   ├── trainK
│   │   └── train_image_1.png
│   │   └── train_image_2.png
│   │   ...
│   │   └── train_image_o.png

Training and Testing

  1. Use ‘trainer.py’ to train the chosen model incrementally. After each iteration, the learned representations are saved in a h5 file.
  2. After training the model instances, use ‘tester.py’ to generate the classification results.
  3. Use ‘confusionMatrix.m’ to view the obtained results.

Results

The detailed results of the proposed framework on all the above-mentioned datasets are stored in the 'results.mat' file.

Citation

If you use the proposed scheme (or any part of this code in your research), please cite the following paper:

@inproceedings{BayesianIDA,
  title   = {Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning},
  author  = {Taimur Hassan and Bilal Hassan and Muhammad Usman Akram and Shahrukh Hashmi and Abdul Hakeem and Naoufel Werghi},
  note = {IEEE Transactions on Instrumentation and Measurement},
  year = {2021}
}

Contact

If you have any query, please feel free to contact us at: [email protected].

Owner
Taimur Hassan
Taimur Hassan
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

4.2k Jan 01, 2023
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022