利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

Overview

KeepAccounts_v2.0

KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。

作者: MickLife

Bilibili: https://space.bilibili.com/38626658

Github: https://github.com/MickLife/KeepAccounts_v2.0

程序和表格下载链接:https://pan.baidu.com/s/1trgfNS6RuXJwy_NWVSo74Q 提取码:84d3

v2.0更新内容

  1. 利用python脚本编写程序,自动合并微信、支付宝账单,节省了操作时间。
  2. 更新记账分类方法,使记账有助于改善你的消费习惯
  3. 更新Excel明细页和可视化页,增加数据透视表和数据透视图。

如何使用

第一步 下载账单

微信账单

  1. 进入手机版微信,选择 “我”,进入用户中心界面,然后点击 “支付” 选项;
  2. 点击 “钱包”,进入钱包界面后,点击右上角的 “账单” 按钮;
  3. 点击右上角“常见问题”,点击“下载账单”->“用于个人对账”;
  4. 自定义账单时间,然后点击 “下一步”;
  5. 填写要导出的邮箱(微信会把账单发送到你填写的邮箱),点击 “下一步”;
  6. 输入支付密码,提示申请已提交,微信官方会给你发送一条消息,里面有账单的解压码;
  7. 前往你的邮箱下载得到压缩包,用解压码解压得到 .csv 格式微信账单,导出成功。

支付宝账单

  1. 电脑浏览器中打开支付宝官网 https://www.alipay.com/
  2. 点击右上角“客户服务”->“自助服务”;
  3. 在“交易服务”中点击“交易记录”一项;
  4. 扫码登录;
  5. 选择交易时间,并选择下载 excel 格式,得到 .zip 压缩包(其实是 .csv 格式,这是一种更轻便的文本格式);
  6. 解压压缩包得到 .csv 格式的支付宝账单,导出成功。

备注: 商家用户请勿从商家中心导出,否则数据格式不同无法使用本程序导入账单。请按以上步骤或切换至个人版页面导出。

第二步 运行程序合并账单

  1. 将 KeepAccounts_v2.0.zip 解压,推荐解压至 D:\Program Files\;
  2. 运行 KeepAccounts_v2.0 目录下的 KeepAccounts.exe
  3. 根据提示,依次选择微信 csv 账单、支付宝 csv 账单和账本文件(自动记账2.0_源数据.xlsx);
  4. 程序会自动将微信和支付宝账单合并到你选择的账本文件。
  5. 运行成功后按任意键退出。

备注:

  • 程序会将账单中大部分中性支出、收入(如提现、退款)删除。
  • 小部分中性支出、收入会被程序识别,并在逻辑 2 标注 0,乘后金额会显示 0。
  • 由于算法的编写由个人完成,不能做到识别所有情况,如果一些中性支出、收入没能自动识别,请手动在源数据表格中将乘后金额改为 0 即可。

第三步 补充数据、标记类别

  1. 打开“自动记账2.0_源数据.xlsx”;
  2. 打开“明细”sheet页,在最后一行追加其他收入和支出数据(如现金、银行卡、校园卡、余额宝等消费情况);
  3. 在最后两列的下拉列表中选择类别;
  4. 填写时注意,“月份、乘后金额、类别标记1、类别标记2”为必填项,其他可视情况填写。
  5. 追加数据后一定要保存

第四步 查看可视化图表

  1. 打开“自动记账2.0_可视化.xlsx”前,最好不要关闭源数据表格;

  2. 打开“自动记账2.0_可视化.xlsx”;(如果提示各种安全警告和更新链接询问,请点击“允许更新、启用内容”之类的选项)

  3. 如果你是第一次打开这个表格,需要更新数据源连接属性。 更新步骤:

    a. 请选择任意数据透视表中的任意一个单元格,点击“数据透视表工具-分析”选项卡,点击“更新数据源”处的下拉菜单,点击“连接属性”

    b. 在“连接属性”对话框中,点击“定义”选项卡

    c. 点击连接文件路径右侧的“浏览”,定位到表格文件的路径,选择“自动记账2.0_数据源.xlsx”文件,点击确定

    d. 在选择表格的弹窗中选择“明细$”,点击确定;

    e. 点击确定,看到数据自动更新。

  4. 查看可视化图表,退出时记得保存。

备注: 所有数据透视表、数据透视图中的筛选按钮均可点击,可以根据需求自定义。


Q&A

如何自定义消费类型?

  1. 在“自动记账2.0_源数据.xlsx”文件的“消费类型2.0”sheet页修改类别;
  2. 消费类别会同步出现在明细页的下拉列表、可视化的数据透视图和透视表中;
  3. 第二行编辑后需在“公式”选项卡 - “名称管理器”中同步修改,否则二级下拉列表将失效。

备注:

  • 类别名称中勿包含空格、划线、标点符号等特殊字符,会导致bug
  • 如果不清楚背后的原理,请在B2:O12区域内编辑,不要新增行列
  • 请勿修改明细页的数据有效性公式,因为不使用INDIRECT公式改用直接引用会导致bug,下拉列表消失。
  • 如果修改后出现问题,请自行检索关键词,学习有关知识:数据有效性、二级下拉、INDIRECT函数、名称管理器。

打开可视化表格,数据没有更新怎么办?

答:第一次打开这个表格,需要更新数据源连接属性。后续打开时不必每次这样操作。如果你已经更新过连接属性,但数据仍没有更新,请右键数据透视表的任意单元格,点击“更新”。如果这样还是不行,请在数据透视表工具-分析选项卡中,点击刷新下面的小三角,点击“全部刷新”。

追加其他明细内容需要填写所有项吗?

答:“月份、乘后金额、类别标记1、类别标记2”为必填项,其他可视情况填写。

每月导入前需要删除上个月的明细吗?

答:不需要。程序会直接在明细页最后一行后附加新的数据。

第二年可以接着导入吗?

答:不可以,暂时还不支持筛选年份,因为不想增加工作量ㄒ_ㄒ。第二年就把表格copy一份,数据清空当作新表来记录吧!如果你有好的表格设计想法,欢迎私信与我交流呀。

怎么反馈bug或改进意见?

答:欢迎在B站私信 MickLife 反馈,一起携手改变世界!


附:Excel自动记账v1.0链接: 【Mick小课堂3】Excel自动化个人记账方案 表格分享 https://www.bilibili.com/video/BV145411Y7Bj

Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022
Styleformer - Official Pytorch Implementation

Styleformer -- Official PyTorch implementation Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/

Jeeseung Park 159 Dec 12, 2022
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports

Extreme Classification 49 Nov 06, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed

iamyuanchung 173 Dec 18, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
Registration Loss Learning for Deep Probabilistic Point Set Registration

RLLReg This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV

Felix Järemo Lawin 35 Nov 02, 2022
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022
BookMyShowPC - Movie Ticket Reservation App made with Tkinter

Book My Show PC What is this? Movie Ticket Reservation App made with Tkinter. Tk

The Nithin Balaji 3 Dec 09, 2022