Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Overview

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks

DOI License: MIT

This is the code for reproducing the results of the paper Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks accepted at AAAI 2022.

Requirements

All Python packages required are listed in requirements.txt. To install these packages, run the following commands.

conda create -n preempt-robust python=3.7
conda activate preempt-robust
pip install -r requirements.txt

Preparing CIFAR-10 data

Download the CIFAR-10 dataset from https://www.cs.toronto.edu/~kriz/cifar.html and place it a directory ./data.

Pretrained models

We provide pre-trained checkpoints for adversarially trained model and preemptively robust model.

  • adv_l2: ℓ2 adversarially trained model with early stopping
  • adv_linf: ℓ adversarially trained model with early stopping
  • preempt_robust_l2: ℓ2 preemptively robust model
  • preempt_robust_linf: ℓ preemptively robust model

We also provide a pre-trained checkpoint for a model with randomized smoothing.

  • gaussian_0.1: model trained with additive Gaussian noises (σ = 0.1)

Shell scripts for downloading these checkpoint are located in ./checkpoints/cifar10/wideresent/[train_type]/download.sh. You can run each script to download a checkpoint named ckpt.pt. To download all the checkpoints, run download_all_ckpts.sh. You can delete all the checkpoints by running delete_all_ckpts.sh.

Preemptively robust training

To train preemptively robust classifiers, run the following commands.

1. ℓ2 threat model, ε = δ = 0.5

python train.py --config ./configs/cifar10_l2_model.yaml

2. ℓ threat model, ε = δ = 8/255

python train.py --config ./configs/cifar10_linf_model.yaml

Preemptive robustification and reconstruction algorithms

To generate preepmtive roobust images and their reconstruction, run the following commands. You can specify the classifier used for generating preemptively robust images by changing train_type in each yaml file.

1. ℓ2 threat model, ε = δ = 0.5

python robustify.py --config ./configs/cifar10_l2.yaml
python reconstruct.py --config ./configs/cifar10_l2.yaml

2. ℓ threat model, ε = δ = 8/255

python robustify.py --config ./configs/cifar10_linf.yaml
python reconstruct.py --config ./configs/cifar10_linf.yaml

3. ℓ2 threat model, smoothed network, ε = δ = 0.5

python robustify.py --config ./configs/cifar10_l2_rand.yaml
python reconstruct.py --config ./configs/cifar10_l2_rand.yaml

Grey-box attacks on preemptively robustified images

To conduct grey-box attacks on preemptively robustified images, run the following commands. You can specify attack type by changing attack_type_eval in each yaml file.

1. ℓ2 threat model, ε = δ = 0.5

python attack_grey_box.py --config ./configs/cifar10_l2.yaml

2. ℓ threat model, ε = δ = 8/255

python attack_grey_box.py --config ./configs/cifar10_linf.yaml

3. ℓ2 threat model, smoothed network, ε = δ = 0.5

python attack_grey_box.py --config ./configs/cifar10_l2_rand.yaml

White-box attacks on preemptively robustified images

To conduct white-box attacks on preemptively robustified images, run the following commands. You can specify attack type and its perturbation size by changing attack_type_eval and wbox_epsilon_p in each yaml file.

1. ℓ2 threat model, ε = δ = 0.5

python attack_white_box.py --config ./configs/cifar10_l2.yaml

2. ℓ threat model, ε = δ = 8/255

python attack_white_box.py --config ./configs/cifar10_linf.yaml

3. ℓ2 threat model, smoothed network, ε = δ = 0.5

python attack_white_box.py --config ./configs/cifar10_l2_rand.yaml
You might also like...
Official implementation for (Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching, AAAI-2021)

Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching Official pytorch implementation of "Show, Attend and Distill: Kn

Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

PyTorch Implementation for AAAI'21
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling vi

Official Pytorch implementation of
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

Official PyTorch implementation of the paper
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

Releases(v1.0)
A collection of easy-to-use, ready-to-use, interesting deep neural network models

Interesting and reproducible research works should be conserved. This repository wraps a collection of deep neural network models into a simple and un

Aria Ghora Prabono 16 Jun 16, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks

Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural

31 Dec 06, 2022
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
Video2x - A lossless video/GIF/image upscaler achieved with waifu2x, Anime4K, SRMD and RealSR.

Official Discussion Group (Telegram): https://t.me/video2x A Discord server is also available. Please note that most developers are only on Telegram.

K4YT3X 5.9k Dec 31, 2022
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022