Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Overview

Deep Constrained Least Squares for Blind Image Super-Resolution

[Paper]

This is the official implementation of 'Deep Constrained Least Squares for Blind Image Super-Resolution', CVPR 2022.

Updates

[2022.03.09] We released the code and provided the pretrained model weights here.
[2022.03.02] Our paper has been accepted by CVPR 2022.

DCLS

Overview

DCLS

Dependenices

  • OS: Ubuntu 18.04
  • nvidia :
    • cuda: 10.1
    • cudnn: 7.6.1
  • python3
  • pytorch >= 1.6
  • Python packages: numpy opencv-python lmdb pyyaml

Dataset Preparation

We use DIV2K and Flickr2K as our training datasets (totally 3450 images).

To transform datasets to binary files for efficient IO, run:

python3 codes/scripts/create_lmdb.py

For evaluation of Isotropic Gaussian kernels (Gaussian8), we use five datasets, i.e., Set5, Set14, Urban100, BSD100 and Manga109.

To generate LRblur/LR/HR/Bicubic datasets paths, run:

python3 codes/scripts/generate_mod_blur_LR_bic.py

For evaluation of Anisotropic Gaussian kernels, we use DIV2KRK.

(You need to modify the file paths by yourself.)

Train

  1. The core algorithm is in codes/config/DCLS.
  2. Please modify codes/config/DCLS/options to set path, iterations, and other parameters...
  3. To train the model(s) in the paper, run below commands.

For single GPU:

cd codes/config/DCLS
python3 train.py -opt=options/setting1/train_setting1_x4.yml

For distributed training

cd codes/config/DCLS
python3 -m torch.distributed.launch --nproc_per_node=4 --master_poer=4321 train.py -opt=options/setting1/train_setting1_x4.yml --launcher pytorch

Or choose training options use

cd codes/config/DCLS
sh demo.sh

Evaluation

To evalute our method, please modify the benchmark path and model path and run

cd codes/config/DCLS
python3 test.py -opt=options/setting1/test_setting1_x4.yml

Results

Comparison on Isotropic Gaussian kernels (Gaussian8)

ISO kernel

Comparison on Anisotropic Gaussian kernels (DIV2KRK)

ANISO kernel

Citations

If our code helps your research or work, please consider citing our paper. The following is a BibTeX reference.

@article{luo2022deep,
  title={Deep Constrained Least Squares for Blind Image Super-Resolution},
  author={Luo, Ziwei and Huang, Haibin and Yu, Lei and Li, Youwei and Fan, Haoqiang and Liu, Shuaicheng},
  journal={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}

Contact

email: [[email protected]]

Acknowledgement

This project is based on [DAN], [MMSR] and [BasicSR].

Owner
MEGVII Research
Power Human with AI. 持续创新拓展认知边界 非凡科技成就产品价值
MEGVII Research
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
SigOpt wrappers for scikit-learn methods

SigOpt + scikit-learn Interfacing This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together Getting Started In

SigOpt 73 Sep 30, 2022
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
Colab notebook and additional materials for Python-driven analysis of redlining data in Philadelphia

RedliningExploration The Google Colaboratory file contained in this repository contains work inspired by a project on educational inequality in the Ph

Benjamin Warren 1 Jan 20, 2022
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
3D-aware GANs based on NeRF (arXiv).

CIPS-3D This repository will contain the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis.

Peterou 563 Dec 31, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023