Deep Learning to Create StepMania SM FIles

Overview

StepCOVNet

header_example

Codacy Badge

Running Audio to SM File Generator

Currently only produces .txt files. Use SMDataTools to convert .txt to .sm

python stepmania_note_generator.py -i --input <string> -o --output <string> --model <string> -v --verbose <int>
  • -i --input input directory path to audio files
  • -o --output output directory path to .txt files
  • -m --model input directory path to StepCOVNet model````
  • OPTIONAL: -v --verbose 1 shows full verbose, 0 shows no verbose; default is 0

Creating Training Dataset

Link to training data: https://drive.google.com/open?id=1eCRYSf2qnbsSOzC-KmxPWcSbMzi1fLHi

To create a training dataset, you need to parse the .sm files and convert sound files into .wav files:

  • SMDataTools should be used to parse the .sm files into .txt files.
  • wav_converter.py can be used to convert the audio files into .wav files. The default sample rate is 16000hz.

Once the parsed .txt files and .wav files are generated, place the .wav files into separate directories and run training_data_collection.py.

python training_data_collection.py -w --wav <string> -t --timing <string> -o --output <string> --multi <int> --limit <int> --cores <int> --name <string> --distributed <int>
  • -w --wav input directory path to .wav files
  • -t --timing input directory path to timing files
  • -o --output output directory path to output dataset
  • OPTIONAL: --multi 1 collects STFTs using frame_size of [2048, 1024, 4096], 0 collects STFTs using frame_size of [2048]; default is 0
  • OPTIONAL: --limit > 0 stops data collection at limit, -1 means unlimited; default is -1
  • OPTIONAL: --cores > 0 sets the number of cores to use when collecting data; -1 means uses the number of physical cores; default is 1
  • OPTIONAL: --name name to give the dataset; default names dataset based on the configuration parameters
  • OPTIONAL: --distributed 0 creates a single dataset, 1 creates a distributed dataset; default is 0

Training Model

Once training dataset has been created, run train.py.

python train.py -i --input <string> -o --output <string> -d --difficulty <int> --lookback <int> --limit <int> --name <string> --log <string>
  • -i --input input directory path to training dataset
  • -o --output output directory path to save model
  • OPTIONAL: -d --difficulty [0, 1, 2, 3, 4] sets the song difficulty to use when training to ["challenge", "hard", "medium", "easy", "beginner"], respectively; default is 0 or "challenge"
  • OPTIONAL: --lookback > 2 uses timeseries based on lookback when modeling; default is 3
  • OPTIONAL: --limit > 0 limits the amount of training samples used during training, -1 uses all the samples; default is -1
  • OPTIONAL: --name name to give the finished model; default names model based on dat aset used
  • OPTIONAL: --log output directory path to store tensorboard data

TODO

  • End-to-end unit tests for all modules

Credits

Owner
Chimezie Iwuanyanwu
Software Engineer
Chimezie Iwuanyanwu
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
Finding Donors for CharityML

Finding-Donors-for-CharityML - Investigated factors that affect the likelihood of charity donations being made based on real census data.

Moamen Abdelkawy 1 Dec 30, 2021
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". See below for an overview of

杨攀 93 Jan 07, 2023
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023