A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Overview

Easy-ERA5-Trck

Easy-ERA5-Trck is a super lightweight Lagrangian model for calculating thousands (even millions) of trajectories simultaneously and efficiently using ERA5 data sets. It can implement super simplified equations of 3-D motion to accelerate integration, and use python multiprocessing to parallelize the integration tasks. Due to its simplification and parallelization, Easy-ERA5-Trck performs great speed in tracing massive air parcels, which makes areawide tracing possible.

Another version using WRF output to drive the model can be found here.

Caution: Trajectory calculation is based on the nearest-neighbor interpolation and first-guess velocity for super efficiency. Accurate calculation algorithm can be found on http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-14-00110.1, or use a professional and complicated model e.g. NOAA HYSPLIT instead.

Any question, please contact Zhenning LI ([email protected])

Galleries

Tibetan Plateau Air Source Tracers

tp_tracer

Tibetan Plateau Air Source Tracers (3D)

tp_tracer_3d

Install

If you wish to run easy-era5-trck using grib2 data, Please first install ecCodes.

Please install python3 using Anaconda3 distribution. Anaconda3 with python3.8 has been fully tested, lower version of python3 may also work (without testing).

Now, we recommend to create a new environment in Anaconda and install the requirements.txt:

conda create -n test_era5trck python=3.8
conda activate test_era5trck
pip install -r requirements.txt

If everything goes smoothly, first cd to the repo root path, and run config.py:

python3 config.py

This will convey fundamental configure parameters to ./conf/config_sys.ini.

Usage

test case

When you install the package ready. You may first want to try the test case. config.ini has been set for testcase, which is a very simple run:

[INPUT]
input_era5_case = ./testcase/
input_parcel_file=./input/input.csv

[CORE]
# timestep in min
time_step = 30
precession = 1-order
# 1 for forward, -1 for backward
forward_option = -1
# for forward, this is the initial time; otherwise, terminating time
start_ymdh = 2015080212
# integration length in hours
integration_length = 24
# how many processors are willing to work for you
ntasks = 4
# not used yet
boundary_check = False

[OUTPUT]
# output format, nc/csv, nc recommended for large-scale tracing
out_fmt = nc
out_prefix = testcase
# output frequency in min
out_frq = 60
# when out_fmt=csv, how many parcel tracks will be organized in a csv file.
sep_num = 5000

When you type python3 run.py, Easy-ERA5-Trck will uptake the above configurations, by which the ERA5 UVW data in ./testcase will be imported for driving the Lagrangian integration.

Now you will see your workers are dedicated to tracing the air parcels. After several seconds, if you see something like:

2021-05-31 17:32:14,015 - INFO : All subprocesses done.
2021-05-31 17:32:14,015 - INFO : Output...
2021-05-31 17:32:14,307 - INFO : Easy ERA5 Track Completed Successfully!

Congratulations! The testcase works smoothly on your machine!

Now you could check the output file in ./output, named as testcase.I20150802120000.E20150801120000.nc|csv, which indicates the initial time and endding time. For backward tracing, I > E, and vice versa.

You could choose output files as plain ascii csv format or netCDF format (Recommended). netCDF format output metadata looks like:

{
dimensions:
    time = 121 ;
    parcel_id = 413 ;
variables:
    double xlat(time, parcel_id) ;
        xlat:_FillValue = NaN ;
    double xlon(time, parcel_id) ;
        xlon:_FillValue = NaN ;
    double xh(time, parcel_id) ;
        xh:_FillValue = NaN ;
    int64 time(time) ;
        time:units = "hours since 1998-06-10 00:00:00" ;
        time:calendar = "proleptic_gregorian" ;
    int64 parcel_id(parcel_id) ;
}

setup your case

Congratulation! After successfully run the toy case, of course, now you are eager to setup your own case. First, build your own case directory, for example, in the repo root dir:

mkdir mycase

Now please make sure you have configured ECMWF CDS API correctly, both in your shell environment and python interface.

Next, set [DOWNLOAD] section in config.ini to fit your desired period, levels, and region for downloading.

[DOWNLOAD]
store_path=./mycase/
start_ymd = 20151220
end_ymd = 20160101
pres=[700, 750, 800, 850, 900, 925, 950, 975, 1000]

# eara: [North, West, South, East]
area=[-10, 0, -90, 360]
# data frame frequency: recommend 1, 2, 3, 6. 
# lower frequency will download faster but less accurate in tracing
freq_hr=3

Here we hope to download 1000-700 hPa data, from 20151220 to 20160101, 3-hr temporal frequency UVW data from ERA5 CDS.

./utlis/getERA5-UVW.py will help you to download the ERA5 reanalysis data for your case, in daily file with freq_hr temporal frequency.

cd utils
python3 getERA5-UVW.py

While the machine is downloading your data, you may want to determine the destinations or initial points of your targeted air parcels. ./input/input.csv: This file is the default file prescribing the air parcels for trajectory simulation. Alternatively, you can assign it by input_parcel_file in config.ini.

The format of this file:

airp_id, init_lat, init_lon, init_h0 (hPa)

For forward trajectory, the init_{lat|lon|h0} denote initial positions; while for backward trajectory, they indicate ending positions. You can write it by yourself. Otherwise, there is also a utility ./utils/take_box_grid.py, which will help you to take air parcels in a rectanguler domain.

plese also set other sections in config.ini accordingly, now these air parcels are waiting your command python3 run.py to travel the world!

Besides, ./utils/control_multi_run.py will help you to run multiple seriels of the simulation. There are some postprocessing scripts for visualization in post_process, you may need to modify them to fit your visualization usage.

Repository Structure

run.py

./run.py: Main script to run the Easy-ERA5-Trck.

conf

  • ./conf/config.ini: Configure file for the model. You may set ERA5 input file, input frequency, integration time steps, and other settings in this file.
  • ./conf/config_sys.ini: Configure file for the system, generate by run config.py.
  • ./conf/logging_config.ini: Configure file for logging module.

core

  • ./core/lagrange.py: Core module for calculating the air parcels Lagrangian trajectories.

lib

  • ./lib/cfgparser.py: Module file containing read/write method of the config.ini
  • ./lib/air_parcel.py: Module file containing definition of air parcel class and related methods such as march and output.
  • ./lib/preprocess_era5inp.py: Module file that defines the field_hdl class, which contains useful fields data (U, V, W...) and related method, including ERA5 grib file IO operations.
  • ./lib/utils.py: utility functions for the model.

post_process

Some visualization scripts.

utils

Utils for downloading, generating input.csv, etc.

Version iteration

Oct 28, 2020

  • Fundimental pipeline design, multiprocessing, and I/O.
  • MVP v0.01

May 31, 2021

  • Major Revision, logging module, and exception treatment
  • test case
  • Major documentation update
  • Utility for data downloading
  • Utility for taking grids in a box
  • Basic functions done, v0.10

Jun 09, 2021

  • The automatic detection of longitude range is added, allowing users to adopt two different ranges of longitude: [-180°, 180°] or [0°, 360°].
  • Currently, if you want to use the [-180°, 180°] data version, you can only set ntasks = 1 in the config.ini file.
You might also like...
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB  HUAWEI P40 NCNN benchmark: 6ms/img,
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Releases(v0.10-beta)
  • v0.10-beta(Jun 2, 2021)

    This is a pre-release of Easy-ERA5-Trck. In this v0.10-beta pre-release, we establish the basic functions forward/backward tracing the air parcels in massive amount, exploiting the usage of multiprocessing in Python. You could use the tracing output for visualization, and analysis which does not require very high precession/accuracy. Boundary check has not been involved yet, and exception handlings are still under-developed, with no promise to cover your exceptional cases.

    Source code(tar.gz)
    Source code(zip)
Owner
Zhenning Li
Wind extinguishes a candle but energizes fire.
Zhenning Li
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound"

merlot_reserve Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound" MERLOT Reserve (in submission) is a mo

Rowan Zellers 92 Dec 11, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
Source Code of NeurIPS21 paper: Recognizing Vector Graphics without Rasterization

YOLaT-VectorGraphicsRecognition This repository is the official PyTorch implementation of our NeurIPS-2021 paper: Recognizing Vector Graphics without

Microsoft 49 Dec 20, 2022