Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Overview

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

N|Solid

Overview

This example will show how to validate the status of our firewall before and after a software upgrade. This project will leverage JSNAPY over NETCONF RPCs.

In addition to the Ansible playbok, this project also ships with additional tools to help you along your way. You will find a Dockerfile for running the project in an isolated environment, and a Makefile for those of us that hate typing out everything all the time.

🚀 Executing the playbook

This project provides two unique methods of executing the playbook:

  1. Docker
  2. Your own Python environment

🐳 Docker

With Invoke installed on your machine

If you have invoke installed, you can use these two commands to build the container and run the playbook.

  1. build the container image with
$ invoke container
  1. run the playbook to push the network configuration changes
$ invoke ansible

Without Invoke installed on your system

  1. build the container image with
$ docker build -t registry.gitlab.com/cremsburg/juniper-automation-container:jsnapy-ospf files/docker/
  1. run the playbook to push the network configuration changes
$ docker run -it --rm \
    -v $PWD/files/:/home/tmp/files \
    -v $PWD/files/:/home/tmp/files \
    -w /home/tmp/files/ansible/ \
    registry.gitlab.com/cremsburg/juniper-automation-container:jsnapy-ospf ansible-playbook pb.jsnapy.ospf.yaml

〰️ Notes about Docker

If you are unsure if Docker is installed on your computer, then it's probably safe to suggest that it's not. If you're interested in learning more about the product, I encourage you to read a few blogs on the topic. A personal recommendation would be Digital Ocean

Some of the goodies placed in the docker folder are not relevant to our use case with Python. Feel free to delete them as you see fit, I simply wanted to share with you my Docker build process for all Juniper automation projects (including those based on Ansible). The world is your oyster and I won't judge you on whatever direction you take.

🐍 Your own Python environment

I have included a Poetry file for anyone saavy enough to take advantage. For the uninitiated, Poetry helps replicate Python environments between users with a single file. You'll need to have Poetry installed on your machine, for most users that will be solved with pip install poetry.

This is optional, I will share the methods of going with Poetry or without

  1. install Python dependencies

1a. with Poetry

$ poetry install

1b. without Poetry

$ python3 -m venv venv
$ source venv/bin/activate
$ pip install -r files/docker/requirements.txt
  1. change into Ansible directory
$ cd files/ansible
  1. install official Ansible roles for Juniper devices
$ ansible-galaxy install juniper.junos
  1. run your Ansible playbook
$ ansible-playbook pb.jsnapy.ospf.yaml -i ../docker/inventory.yaml

⚠️ Running into an error about junos-eznc? ⚠️

There's an annoyance with Ansible and the way it interacts with your Python virtual environment. Do not let that frustrate you to the point that you ditch virtual environments altogether, instead use this quick technique to fix the problem.

From your terminal, find out the full path to Python within your virtual environment

$ which python
/home/cdot/.cache/pypoetry/virtualenvs/jsnapy-ospf-X7Chj_yD-py3.8/bin/python

Copy the output from your command and update the ansible.cfg file found in the same directory as the playbook. Do not update the ansible.cfg file in the root of this project, that won't accomplish anything.

add the following line to your ansible.cfg file, make sure to paste in the output of your clipboard rather than use my example

interpreter_python = /home/cdot/.cache/pypoetry/virtualenvs/jsnapy-ospf-X7Chj_yD-py3.8/bin/python

Sorry about that, one day Ansible will get it right. Until then, I recommend considering the Docker approach.

〰️ Notes about Python Virtual Environments

Similar to Docker, if you are unsure if you're using Python Virtual Environment features, it is safe to suggest that you're not. You are strongly recommended to using a Python Virtual Environment everywhere. You can really mess up your machine if you're too lazy and say "ehh, that seems like it's not important". It is. If it sounds like I'm speaking from experience, well I'll never admit to it.

If you're interested in learning more about setting up Virtual Environments, I encourage you to read a few blogs on the topic. A personal recommendation would be

📝 Dependencies

Refer to the Poetry Lock file located at poetry.lock for detailed descriptions on each package installed.

⚙️ How it works

Let's take a second to do a nice John Madden play-by-play by visiting the documentation in the files/docs/ directory.

Name Description
pb.jsnapy.ospf.rst Validate OSPF neighbors with JSNAPY

〰️ Just an FYI for Ansible AWX / Tower users

You'll note that there is an ansible.cfg file found in the root of the project's directory, as well as a folder roles/ to host the requirements.yml file.

The only purpose these serve is for Ansible Tower, which will look for these files when the project syncs from Gitlab/Github/Whatever, and Tower will auto-install the packages.

The ansible.cfg file will be the definitive for each Playbook (Template) execution, so super important to keep it here.

📸 Screenshot

pb.configure.yaml

Owner
Calvin Remsburg
Calvin Remsburg
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Phil Wang 4.4k Jan 03, 2023
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
This repository includes different versions of the prescribed-time controller as Simulink blocks and MATLAB script codes for engineering applications.

Prescribed-time Control Prescribed-time control (PTC) blocks in Simulink environment, MATLAB R2020b. For more theoretical details, refer to the papers

Amir Shakouri 1 Mar 11, 2022
Implements a fake news detection program using classifiers.

Fake news detection Implements a fake news detection program using classifiers for Data Mining course at UoA. Description The project is the categoriz

Apostolos Karvelas 1 Jan 09, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

DFFNet Paper DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation. Xiangyan Tang, Wenxuan Tu, Keqiu Li, J

4 Sep 23, 2022
⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co

Daniel Steinberg 0 Nov 06, 2022
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022