Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Overview

Cross-Attention Transfer for Machine Translation

This repo hosts the code to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021.

Setup

We provide our scripts and modifications to Fairseq. In this section, we describe how to go about running the code and, for instance, reproduce Table 2 in the paper.

Data

To view the data as we prepared and used it, switch to the main branch. But we recommend cloning code from this branch to avoid downloading a large amount of data at once. You can always obtain any data as necessary from the main branch.

Installations

We worked in a conda environment with Python 3.8.

  • First install the requirements.
      pip install requirements.txt
  • Then install Fairseq. To have the option to modify the package, install it in editable mode.
      cd fairseq-modified
      pip install -e .
  • Finally, set the following environment variable.
      export FAIRSEQ=$PWD
      cd ..

Experiments

For the purpose of this walk-through, we assume we want to train a De–En model, using the following data:

De-En
├── iwslt13.test.de
├── iwslt13.test.en
├── iwslt13.test.tok.de
├── iwslt13.test.tok.en
├── iwslt15.tune.de
├── iwslt15.tune.en
├── iwslt15.tune.tok.de
├── iwslt15.tune.tok.en
├── iwslt16.train.de
├── iwslt16.train.en
├── iwslt16.train.tok.de
└── iwslt16.train.tok.en

by transferring from a Fr–En parent model, the experiment files of which is stored under FrEn/checkpoints.

  • Start by making an experiment folder and preprocessing the data.
      mkdir test_exp
      ./xattn-transfer-for-mt/scripts/data_preprocessing/prepare_bi.sh \
          de en test_exp/ \
          De-En/iwslt16.train.tok De-En/iwslt15.tune.tok De-En/iwslt13.test.tok \
          8000
    Please note that prepare_bi.sh is written for the most general case, where you are learning vocabulary for both the source and target sides. When necessary modify it, and reuse whatever vocabulary you want. In this case, e.g., since we are transferring from Fr–En to De–En, we will reuse the target side vocabulary from the parent. So 8000 refers to the source vocabulary size, and we need to copy parent target vocabulary instead of learning one in the script.
      cp ./FrEn/data/tgt.sentencepiece.bpe.model $DATA
      cp ./FrEn/data/tgt.sentencepiece.bpe.vocab $DATA
  • Now you can run an experiment. Here we want to just update the source embeddings and the cross-attention. So we run the corresponding script. Script names are self-explanatory. Set the correct path to the desired parent model checkpoint in the script, and:
      bash ./xattn-transfer-for-mt/scripts/training/reinit-src-embeddings-and-finetune-parent-model-on-translation_src+xattn.sh \
          test_exp/ de en
  • Finally, after training, evaluate your model. Set the correct path to the detokenizer that you use in the script, and:
      bash ./xattn-transfer-for-mt/scripts/evaluation/decode_and_score_valid_and_test.sh \
          test_exp/ de en \
          $PWD/De-En/iwslt15.tune.en $PWD/De-En/iwslt13.test.en

Issues

Please contact us and report any problems you might face through the issues tab of the repo. Thanks in advance for helping us improve the repo!

Credits

The main body of code is built upon Fairseq. We found it very easy to navigate and modify. Kudos to the developers!
The data preprocessing scripts are adopted from FLORES scripts.
To have mBART fit on the GPUs that we worked with memory-wise, we used the trimming solution provided here.

Citation

@inproceedings{gheini-cross-attention,
  title = "Cross-Attention is All You Need: {A}dapting Pretrained {T}ransformers for Machine Translation",
  author = "Gheini, Mozhdeh and Ren, Xiang and May, Jonathan",
  booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
  month = nov,
  year = "2021"
}
Owner
Mozhdeh Gheini
Computer Science Ph.D. Student at the University of Southern California
Mozhdeh Gheini
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
DeepOBS: A Deep Learning Optimizer Benchmark Suite

DeepOBS - A Deep Learning Optimizer Benchmark Suite DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation

Aaron Bahde 7 May 12, 2020
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Jan 03, 2023
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Vaibhav Rajput 2 Jun 21, 2022
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021