Reference implementation for Structured Prediction with Deep Value Networks

Related tags

Deep Learningdvn
Overview

Deep Value Network (DVN)

This code is a python reference implementation of DVNs introduced in

Deep Value Networks Learn to Evaluate and Iteratively Refine Structured Outputs. Michael Gygli, Mohammad Norouzi, Anelia Angelova. ICML 2017. PDF

Note: This code implements the multi-layer perceptron version used for the multi-label classification experiments only (Section 5.1). The segmentation code was written while inside Google and thus not available.

Requirements

To run this code you need to have tensorflow, numpy, liac-arff, scikit-learn and torchfile installed. Install with

pip install -r requirements.txt

Playing around with a pre-trained Value Net

The pre-trained model for the Bibtex dataset is included in this repository. This allows you do play around with it and it's predictions, using our jupyter notebook.

Replicating the experiments in the paper

Bibtex

To replicate the numbers for bibtex provided in the paper, run:

import reproduce_results
# Reproduce results on the bibtex dataset
reproduce_results.run_bibtex()

By default, the model weights and logs are stored to ./bibtex_dvn. You can monitor the process using tensorboard with

tensorboard --logdir ./bibtex_dvn/

In order to understand the training process two quantities are important:

  1. loss: The loss in estimating the true value of an output hypothesis
  2. gt_f1_scores: The true f1 scores of the generated output hypothesis.

As training progresses, the generated output hypothesis should get better and better. As such, the validation performance reported here closely matches the performance of the test set. The curve should look something like this: Training curve

Bookmarks

For Bookmarks the splits are not provided on http://mulan.sourceforge.net/datasets-mlc.html. Thus, we use the splits provided by SPEN. To get the data, run:

cd mlc_datasets
wget http://www.cics.umass.edu/~belanger/icml_mlc_data.tar.gz
tar -xvf icml_mlc_data.tar.gz
cd ..

Then, you can reproduce the results with

import reproduce_results
# Reproduce results on the bookmarks dataset
reproduce_results.run_bookmarks()

The model weights and logs are stored to ./bookmarks_dvn/.

Contributors

Michael Gygli, Mohammad Norouzi, Anelia Angelova

Code by Michael Gygli

Owner
Michael Gygli
Computer Vision and Artificial Intelligence Researcher, PhD
Michael Gygli
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition

AdaFocusV2 This repo contains the official code and pre-trained models for AdaFo

79 Dec 26, 2022
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration

This repo is for the paper: Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration The DAC environment is based on the Dynam

Carola Doerr 1 Aug 19, 2022
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

U-Net Implementation By Christopher Ley This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical

Christopher Ley 1 Jan 06, 2022
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,

159 Dec 28, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022