This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

Overview

deSpeckNet-TF-GEE

This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling published in IEEE Transactions on Geoscience and Remote Sensing. The original paper version of the code was implemented in Matlab but I think implementing the method in Tensorflow and Google Earth Engine (GEE) will improve its usabiltiy in the remote sensing community. The implementation uses python and seamlessly integrates Sentinel-1 SAR image preparation in GEE with deep learning in Tensorflow.

Note: I have made some modificatons from the original implementation, such as the data is processed in dB scale, patch density is different from the original Matlab implementation and the optimizer is Adam.

Architecture

deSpeckNet uses a simaese architecture to reconstruct the clean image and the original noisy image using two mean square error loss functions. To fine tune the model to new images with unknown speckle distribution, the model does not require any clean reference image.
drawing1 drawing_finetune

If interested, the pre-print version of the article is freely available here

Usage

To train a model, the user needs to provide an area of interest in GEE geometry format and run the prepare_data.py first to prepare the training datasets. The user needs to select training mode to run the script. The user needs to also specify their preference for storage of data as 'GCS' or 'Drive'. It is assumed the user have installed and configured Google cloud SDK on their local machine. For users that prefer to use google drive, the drive should be mounted at /content/drive for the scripts to run.

To fine tune the model, the user needs to execute the prepare_data.py script one more time in tuning mode. Once a model is trained, the user can directly execute the test.py script to make inference on the fine tuned area. By default, the despeckled image is uploaded to GEE.

A jupyter notebook version of the scripts is also included in the notebook folder, which should make it easier for users to run the code in Google colab without worrying about software dependencies.

Dependencies

To use the python scripts, we assume you have a gmail account and have already authenticated GEE and Cloud SDK on your local machine. The scripts are written in Tensorflow 2.7 so there may be issues with earlier versions of Tensorflow. To avoid these steps users could alternatively use the jupyter notebooks available in the notebooks folder to run the scripts in colab.

Acknowledgment

Some functions were adopted from Google Earth Engine example workflow page.

Reference

A. G. Mullissa, D. Marcos, D. Tuia, M. Herold and J. Reiche, "deSpeckNet: Generalizing Deep Learning-Based SAR Image Despeckling," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-15, 2022, Art no. 5200315, doi: 10.1109/TGRS.2020.3042694.

Owner
Adugna Mullissa
Dr. Adugna Mullissa is a Radar remote sensing and machine learning scientist at Wageningen University and Research in the Netherlands.
Adugna Mullissa
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
PyTorch trainer and model for Sequence Classification

PyTorch-trainer-and-model-for-Sequence-Classification After cloning the repository, modify your training data so that the training data is a .csv file

NhanTieu 2 Dec 09, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service » Home page · Team notion · Members 목차 프로젝트 소개 프로젝트 목표 사용한 기술스택과 수행도구 팀원 구현 기능 주요 기능 추가 기능

LiJell 7 Jul 14, 2022
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
Woosung Choi 63 Nov 14, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023