The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Overview

title

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

Requirements

pip install -r requirements.txt

Data

The format of datasets includes three columns, the first column is word, the second column is noisy labels and the third column is gold labels. For datasets without golden labels, you could set the third column the same as the second column. We provide the CoNLL 2003 English with recall 0.5 and precision 0.9 in './data/eng_r0.5p0.9'

Confidence Estimation Strategies

Local Strategy

python confidence_estimation_local.py --dataset eng_r0.5p0.9 --embedding_file ${PATH_TO_EMBEDDING} --embedding_dim ${DIM_OF_EMBEDDING} --neg_noise_rate ${NOISE_RATE_OF_NEGATIVES} --pos_noise_rate ${NOISE_RATE_OF_POSITIVES}

For '--neg_noise_rate' and '--pos_noise_rate', you can set them as -1.0 to use golden noise rate (experiment 12 in Table 1 For En), or you can set them as other values (i.e., --neg_noise_rate 0.09 --pos_noise_rate 0.14 for experiment 10, En)

Global Strategy

python confidence_estimation_global.py --dataset eng_r0.5p0.9 --embedding_file ${PATH_TO_EMBEDDING} --embedding_dim ${DIM_OF_EMBEDDING} --neg_noise_rate ${NOISE_RATE_OF_NEGATIVES} --pos_noise_rate ${NOISE_RATE_OF_POSITIVES}

For 'neg_noise_rate' and 'pos_noise_rate', you can set them as -1.0 to use golden noise rate (experiment 13 in Table 1 for En), or you can set them as other values (i.e., --neg_noise_rate 0.1 --pos_noise_rate 0.13 for experiment 11, En)

Key Implementation

equation (3) is implemented in ./model/linear_partial_crf_inferencer.py, line 79-85.

equation (4) is implemented in ./model/neuralcrf_small_loss_constrain_local.py, line 139.

equation (5) is implemented in ./confidence_estimation_local.py, line 74-87 or ./confidence_estimation_global.py, line 75-85.

equation (6) and (7) are implemented in ./model/neuralcrf_small_loss_constrain_global.py, line 188-194 or ./model/neuralcrf_small_loss_constrain_local.py, line 188-197.

For global strategy, equation (8) is implemented in ./model/neuralcrf_small_loss_constrain_global.py, line 195-214 and ./model/linear_partial_crf_inferencer.py, line 36-48. For local strategy, equation (8) is implemented in ./model/neuralcrf_small_loss_constrain_local.py, line 198-215 and ./model/linear_crf_inferencer.py, line 36-48.

This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
Script for getting information in discord

User-info.py Script for getting information in https://discord.com/ Instalaรงรฃo: apt-get update -y apt-get upgrade -y apt-get install git pkg install

Moleey 1 Dec 18, 2021
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
SPTAG: A library for fast approximate nearest neighbor search

SPTAG: A library for fast approximate nearest neighbor search SPTAG SPTAG (Space Partition Tree And Graph) is a library for large scale vector approxi

Microsoft 4.3k Jan 01, 2023
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

NIKUNJ BHATT 25 Aug 11, 2021
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model ๐Ÿ“‹ This is the implementation of the Lifelong infinite mixture model ๐Ÿ“‹ Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
๐Ÿƒโ€โ™€๏ธ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion ๐Ÿƒโ€โ™€๏ธ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

yzf 1 Jun 12, 2022
PyTorch implementation of Pointnet2/Pointnet++

Pointnet2/Pointnet++ PyTorch Project Status: Unmaintained. Due to finite time, I have no plans to update this code and I will not be responding to iss

Erik Wijmans 1.2k Dec 29, 2022
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
MEDS: Enhancing Memory Error Detection for Large-Scale Applications

MEDS: Enhancing Memory Error Detection for Large-Scale Applications Prerequisites cmake and clang Build MEDS supporting compiler $ make Build Using Do

Secomp Lab at Purdue University 34 Dec 14, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022