Morphable Detector for Object Detection on Demand

Overview

Morphable Detector for Object Detection on Demand

(ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand.

teaser

If our project is helpful for your research, please consider citing:

@inproceedings{zhaomorph,
  author  = {Xiangyun Zhao, Xu Zou, Ying Wu},
  title   = {Morphable Detector for Object Detection on Demand},
  booktitle = {ICCV},
  Year  = {2021}
}

Install

First, install PyTorch and torchvision. We have tested on version of 1.8.0 with CUDA 11.0, but the other versions should also be working.

Our code is based on maskrcnn-benchmark, so you should install all dependencies.

Data Preparation

Download large scale few detection dataset here and covert the data into COCO dataset format. The file structure should look like:

  $ tree data
  dataset
  ├──fsod
      ├── annototation
      │   
      ├── images

Training (EM-like approach)

We follow FSOD Paper to pretrain the model using COCO dataset for 200,000 iterations. So, you can download the COCO pretrain model here, and use it to initilize the network.

We first initialize the prototypes using semantic vectors, then train the network run:

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS ./tools/train_sem_net.py \
--config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml"  OUTPUT_DIR "YOUR_OUTPUT_PATH" \
MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN  2000 SOLVER.IMS_PER_BATCH 4 SOLVER.MAX_ITER 270000 \
SOLVER.STEPS "(50000,70000)" SOLVER.CHECKPOINT_PERIOD 10000 \
SOLVER.BASE_LR 0.002  

Then, to update the prototypes, we first extract the features for the training samples by running:

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS \
./tools/train_sem_net.py --config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml"  \ 
FEATURE_DIR "features" OUTPUT_DIR "WHERE_YOU_SAVE_YOUR_MODEL" \
FEATURE_SIZE 200 SEM_DIR "visual_sem.txt" GET_FEATURE True \
MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN  2000 \
SOLVER.IMS_PER_BATCH 4 SOLVER.MAX_ITER 80000 \
SOLVER.CHECKPOINT_PERIOD 10000000

To compute the mean vectors and update the prototypes, run

cd features

python mean_features.py FEATURE_FILE MEAN_FEATURE_FILE
python update_prototype.py MEAN_FEATURE_FILE

To train the network using the updated prototypes, run

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS \
./tools/train_sem_net.py --config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml"  \
SEM_DIR "PATH_WHERE_YOU_SAVE_THE_PROTOTYPES" VISUAL True OUTPUT_DIR "WHERE_YOU_SAVE_YOUR_MODEL" \ 
MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN  2000 SOLVER.IMS_PER_BATCH 4 \
SOLVER.MAX_ITER 70000 SOLVER.STEPS "(50000,80000)" \
SOLVER.CHECKPOINT_PERIOD 10000 \
SOLVER.BASE_LR 0.002 

Tests

After the model is trained, we randomly sample 5 samples for each novel category from the test data and use the mean feature vectors for the 5 samples as the prototype for that categpry. The results with different sample selection may vary a bit. To reproduce the results, we provide the features we extracted from our final model. But you can still extract your own features from your trained model.

To extract the features for test data, run

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS \
./tools/train_sem_net.py --config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml"  \ 
FEATURE_DIR "features" OUTPUT_DIR "WHERE_YOU_SAVE_YOUR_MODEL" \
FEATURE_SIZE 200 SEM_DIR "visual_sem.txt" GET_FEATURE True \
MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN  2000 \
SOLVER.IMS_PER_BATCH 4 SOLVER.MAX_ITER 80000 \
SOLVER.CHECKPOINT_PERIOD 10000000

To compute the prototype for each class (online morphing), run

cd features

python mean_features.py FEATURE_FILE MEAN_FEATURE_FILE

Then run test,

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS ./tools/test_sem_net.py --config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml" SEM_DIR WHERE_YOU_SAVE_THE_PROTOTYPES VISUAL True OUTPUT_DIR WHERE_YOU_SAVE_THE_MODEL MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN 2000 FEATURE_SIZE 200 MODEL.ROI_BOX_HEAD.NUM_CLASSES 201 TEST_SCALE 0.7

Models

Our pre-trained ResNet-50 models can be downloaded as following:

name iterations AP AP^{0.5} model Mean Features
MD 70,000 22.2 37.9 download download
name iterations AP AP^{0.5} Mean Features
MD 1-shot 70,000 19.6 33.3 download
MD 2-shot 70,000 20.9 35.7 download
MD 5-shot 70,000 22.2 37.9 download
Owner
Ph.D. student at EECS department, Northwestern University
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
Implementation of a Transformer using ReLA (Rectified Linear Attention)

ReLA (Rectified Linear Attention) Transformer Implementation of a Transformer using ReLA (Rectified Linear Attention). It will also contain an attempt

Phil Wang 49 Oct 14, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
State of the Art Neural Networks for Generative Deep Learning

pyradox-generative State of the Art Neural Networks for Generative Deep Learning Table of Contents pyradox-generative Table of Contents Installation U

Ritvik Rastogi 8 Sep 29, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
22 Oct 14, 2022
π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

375 Dec 31, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022