TransVTSpotter: End-to-end Video Text Spotter with Transformer

Overview

TransVTSpotter: End-to-end Video Text Spotter with Transformer

License: MIT

Introduction

A Multilingual, Open World Video Text Dataset and End-to-end Video Text Spotter with Transformer

Link to our MOVText: A Large-Scale, Multilingual Open World Dataset for Video Text Spotting

Updates

  • (08/04/2021) Refactoring the code.

  • (10/20/2021) The complete code has been released .

ICDAR2015(video) Tracking challenge

Methods MOTA MOTP IDF1 Mostly Matched Partially Matched Mostly Lost
TransVTSpotter 45.75 73.58 57.56 658 611 647

Notes

  • The training time is on 8 NVIDIA V100 GPUs with batchsize 16.
  • We use the models pre-trained on COCOTextV2.
  • We do not release the recognition code due to the company's regulations.

Demo

Installation

The codebases are built on top of Deformable DETR and TransTrack.

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4
  • Python>=3.7
  • PyTorch ≥ 1.5 and torchvision that matches the PyTorch installation. You can install them together at pytorch.org to make sure of this
  • OpenCV is optional and needed by demo and visualization

Steps

  1. Install and build libs
git clone [email protected]:weijiawu/TransVTSpotter.git
cd TransVTSpotter
cd models/ops
python setup.py build install
cd ../..
pip install -r requirements.txt
  1. Prepare datasets and annotations
# pretrain COCOTextV2
python3 track_tools/convert_COCOText_to_coco.py

# ICDAR15
python3 track_tools/convert_ICDAR15video_to_coco.py

COCOTextV2 dataset is available in COCOTextV2.

python3 track_tools/convert_crowdhuman_to_coco.py

ICDAR2015 dataset is available in icdar2015.

python3 track_tools/convert_mot_to_coco.py
  1. Pre-train on COCOTextV2
python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_track.py  --output_dir ./output/Pretrain_COCOTextV2 --dataset_file pretrain --coco_path ./Data/COCOTextV2 --batch_size 2  --with_box_refine --num_queries 500 --epochs 300 --lr_drop 100 --resume ./output/Pretrain_COCOTextV2/checkpoint.pth

python3 track_tools/Pretrain_model_to_mot.py

The pre-trained model is available Baidu Netdisk, password:59w8. Google Netdisk

And the MOTA 44% can be found here password:xnlw. Google Netdisk

  1. Train TransVTSpotter
python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_track.py  --output_dir ./output/ICDAR15 --dataset_file text --coco_path ./Data/ICDAR2015_video --batch_size 2  --with_box_refine  --num_queries 300 --epochs 80 --lr_drop 40 --resume ./output/Pretrain_COCOTextV2/pretrain_coco.pth
  1. Visualize TransVTSpotter
python3 track_tools/Evaluation_ICDAR15_video/vis_tracking.py

License

TransVTSpotter is released under MIT License.

Citing

If you use TranVTSpotter in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@article{wu2021opentext,
  title={A Bilingual, OpenWorld Video Text Dataset and End-to-end Video Text Spotter with Transformer},
  author={Weijia Wu, Debing Zhang, Yuanqiang Cai, Sibo Wang, Jiahong Li, Zhuang Li, Yejun Tang, Hong Zhou},
  journal={35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks},
  year={2021}
}
Owner
weijiawu
computer version, OCR I am looking for a research intern or visiting chance.
weijiawu
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
Learning Off-Policy with Online Planning, CoRL 2021

LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In

Harshit Sikchi 24 Nov 22, 2022
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
A Self-Supervised Contrastive Learning Framework for Aspect Detection

AspDecSSCL A Self-Supervised Contrastive Learning Framework for Aspect Detection This repository is a pytorch implementation for the following AAAI'21

Tian Shi 30 Dec 28, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is

Kenan Šehić 5 Mar 15, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

AnimalAI 3 AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research t

Matthew Crosby 58 Dec 12, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022