Bayesian Generative Adversarial Networks in Tensorflow

Related tags

Deep Learningbayesgan
Overview

Bayesian Generative Adversarial Networks in Tensorflow

This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and Andrew Gordon Wilson. This paper appears at NIPS 2017.

Please cite our paper if you find this code useful in your research. The bibliographic information for the paper is

@inproceedings{saatciwilson,
  title={Bayesian gan},
  author={Saatci, Yunus and Wilson, Andrew G},
  booktitle={Advances in neural information processing systems},
  pages={3622--3631},
  year={2017}
}

Contents

  1. Introduction
  2. Dependencies
  3. Training options
  4. Usage
    1. Installation
    2. Synthetic Data
    3. Examples: MNIST, CIFAR10, CelebA, SVHN
    4. Custom data

Introduction

In the Bayesian GAN we propose conditional posteriors for the generator and discriminator weights, and marginalize these posteriors through stochastic gradient Hamiltonian Monte Carlo. Key properties of the Bayesian approach to GANs include (1) accurate predictions on semi-supervised learning problems; (2) minimal intervention for good performance; (3) a probabilistic formulation for inference in response to adversarial feedback; (4) avoidance of mode collapse; and (5) a representation of multiple complementary generative and discriminative models for data, forming a probabilistic ensemble.

We illustrate a multimodal posterior over the parameters of the generator. Each setting of these parameters corresponds to a different generative hypothesis for the data. We show here samples generated for two different settings of this weight vector, corresponding to different writing styles. The Bayesian GAN retains this whole distribution over parameters. By contrast, a standard GAN represents this whole distribution with a point estimate (analogous to a single maximum likelihood solution), missing potentially compelling explanations for the data.

Dependencies

This code has the following dependencies (version number crucial):

  • python 2.7
  • tensorflow==1.0.0

To install tensorflow 1.0.0 on linux please follow instructions at https://www.tensorflow.org/versions/r1.0/install/.

  • scikit-learn==0.17.1

You can install scikit-learn 0.17.1 with the following command

pip install scikit-learn==0.17.1

Alternatively, you can create a conda environment and set it up using the provided environment.yml file, as such:

conda env create -f environment.yml -n bgan

then load the environment using

source activate bgan

Usage

Installation

  1. Install the required dependencies
  2. Clone this repository

Synthetic Data

To run the synthetic experiment from the paper you can use bgan_synth script. For example, the following comand will train the Bayesian GAN (with D=100 and d=10) for 5000 iterations and store the results in .

./bgan_synth.py --x_dim 100 --z_dim 10 --numz 10 --out 
   

   

To run the ML GAN for the same data run

./bgan_synth.py --x_dim 100 --z_dim 10 --numz 1 --out 
   

   

bgan_synth has --save_weights, --out_dir, --z_dim, --numz, --wasserstein, --train_iter and --x_dim parameters. x_dim contolls the dimensionality of the observed data (x in the paper). For description of other parameters please see Training options.

Once you run the above two commands you will see the output of each 100th iteration in . So, for example, the Bayesian GAN's output at the 900th iteration will look like:

In contrast, the output of the standard GAN (corresponding to numz=1, which forces ML estimation) will look like:

indicating clearly the tendency of mode collapse in the standard GAN which, for this synthetic example, is completely avoided by the Bayesian GAN.

To explore the sythetic experiment further, and to generate the Jensen-Shannon divergence plots, you can check out the notebook synth.ipynb.

Unsupervised and Semi-Supervised Learning on benchmark datasets

MNIST, CIFAR10, CelebA, SVHN

bayesian_gan_hmc script allows to train the model on standard and custom datasets. Below we describe the usage of this script.

Data preparation

To reproduce the experiments on MNIST, CIFAR10, CelebA and SVHN datasets you need to prepare the data and use a correct --data_path.

  • for MNIST you don't need to prepare the data and can provide any --data_path;
  • for CIFAR10 please download and extract the python version of the data from https://www.cs.toronto.edu/~kriz/cifar.html; then use the path to the directory containing cifar-10-batches-py as --data_path;
  • for SVHN please download train_32x32.mat and test_32x32.mat files from http://ufldl.stanford.edu/housenumbers/ and use the directory containing these files as your --data_path;
  • for CelebA you will need to have openCV installed. You can find the download links for the data at http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html. You will need to create celebA folder with Anno and img_align_celeba subfolders. Anno must contain the list_attr_celeba.txt and img_align_celeba must contain the .jpg files. You will also need to crop the images by running datasets/crop_faces.py script with --data_path where is the path to the folder containing celebA. When training the model, you will need to use the same for --data_path;

Unsupervised training

You can run unsupervised learning by running the bayesian_gan_hmc script without --semi parameter. For example, use

./run_bgan.py --data_path 
   
     --dataset svhn --numz 10 --num_mcmc 2 --out_dir 

    
      --train_iter 75000 --save_samples --n_save 100

    
   

to train the model on the SVHN dataset. This command will run the method for 75000 iterations and save samples every 100 iterations. Here must lead to the directory where the results will be stored. See data preparation section for an explanation of how to set . See training options section for a description of other training options.

         

Semi-supervised training

To run the semi-supervised experiments you can use the run_bgan_semi.py script, which offers many options including the following:

  • --out_dir: path to the folder, where the outputs will be stored
  • --n_save: samples and weights are saved every n_save iterations; default 100
  • --z_dim: dimensionalit of z vector for generator; default 100
  • --data_path: path to the data; see data preparation for a detailed discussion; this parameter is required
  • --dataset: can be mnist, cifar, svhn or celeb; default mnist
  • --batch_size: batch size for training; default 64
  • --prior_std: std of the prior distribution over the weights; default 1
  • --num_gen: same as J in the paper; number of samples of z to integrate it out for generators; default 1
  • --num_disc: same as J_D in the paper; number of samples of z to integrate it out for discriminators; default 1
  • --num_mcmc: same as M in the paper; number of MCMC NN weight samples per z; default 1
  • --lr: learning rate used by the Adam optimizer; default 0.0002
  • --optimizer: optimization method to be used: adam (tf.train.AdamOptimizer) or sgd (tf.train.MomentumOptimizer); default adam
  • --N: number of labeled samples for semi-supervised learning
  • --train_iter: number of training iterations; default 50000
  • --save_samples: save generated samples during training
  • --save_weights: save weights during training
  • --random_seed: random seed; note that setting this seed does not lead to 100% reproducible results if GPU is used

You can also run WGANs with --wasserstein or train an ensemble of DCGANs with --ml_ensemble . In particular you can train a DCGAN with --ml.

You can train the model in semi-supervised setting by running bayesian_gan_hmc with --semi option. Use -N parameter to set the number of labeled examples to train on. For example, use

./run_bgan_semi.py --data_path 
   
     --dataset cifar --num_gen 10 --num_mcmc 2
--out_dir 
    
      --train_iter 100000 --N 4000 --lr 0.0005

    
   

to train the model on CIFAR10 dataset with 4000 labeled examples. This command will train the model for 100000 iterations and store the outputs in folder.

To train the model on MNIST with 100 labeled examples you can use the following command.

./bayesian_gan_hmc.py --data_path 
   
    / --dataset mnist --num_gen 10 --num_mcmc 2
--out_dir 
    
      --train_iter 100000 -N 100 --semi --lr 0.0005

    
   

Custom data

To train the model on a custom dataset you need to define a class with a specific interface. Suppose we want to train the model on the digits dataset. This datasets consists of 8x8 images of digits. Let's suppose that the data is stored in x_tr.npy, y_tr.npy, x_te.npy and y_te.npy files. We will assume that x_tr.npy and x_te.npy have shapes of the form (?, 8, 8, 1). We can then define the class corresponding to this dataset in bgan_util.py as follows.

class Digits:

    def __init__(self):
        self.imgs = np.load('x_tr.npy') 
        self.test_imgs = np.load('x_te.npy')
        self.labels = np.load('y_tr.npy')
        self.test_labels = np.load('y_te.npy')
        self.labels = one_hot_encoded(self.labels, 10)
        self.test_labels = one_hot_encoded(self.test_labels, 10) 
        self.x_dim = [8, 8, 1]
        self.num_classes = 10

    @staticmethod
    def get_batch(batch_size, x, y): 
        """Returns a batch from the given arrays.
        """
        idx = np.random.choice(range(x.shape[0]), size=(batch_size,), replace=False)
        return x[idx], y[idx]

    def next_batch(self, batch_size, class_id=None):
        return self.get_batch(batch_size, self.imgs, self.labels)

    def test_batch(self, batch_size):
        return self.get_batch(batch_size, self.test_imgs, self.test_labels)

The class must have next_batch and test_batch, and must have the imgs, labels, test_imgs, test_labels, x_dim and num_classes fields.

Now we can import the Digits class in bayesian_gan_hmc.py

from bgan_util import Digits

and add the following lines to to the processing of --dataset parameter.

if args.dataset == "digits":
    dataset = Digits()

After this preparation is done, we can train the model with, for example,

./run_bgan_semi.py --data_path 
   
     --dataset digits --num_gen 10 --num_mcmc 2 
--out_dir 
    
      --train_iter 100000 --save_samples

    
   

Acknowledgements

We thank Pavel Izmailov and Ben Athiwaratkun for help with stress testing this code and creating the tutorial.

Owner
Andrew Gordon Wilson
Machine Learning Professor at New York University.
Andrew Gordon Wilson
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022
CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

CFNet(CVPR 2021) This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuch

106 Dec 28, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
Contains code for Deep Kernelized Dense Geometric Matching

DKM - Deep Kernelized Dense Geometric Matching Contains code for Deep Kernelized Dense Geometric Matching We provide pretrained models and code for ev

Johan Edstedt 83 Dec 23, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022