Bayesian Generative Adversarial Networks in Tensorflow

Related tags

Deep Learningbayesgan
Overview

Bayesian Generative Adversarial Networks in Tensorflow

This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and Andrew Gordon Wilson. This paper appears at NIPS 2017.

Please cite our paper if you find this code useful in your research. The bibliographic information for the paper is

@inproceedings{saatciwilson,
  title={Bayesian gan},
  author={Saatci, Yunus and Wilson, Andrew G},
  booktitle={Advances in neural information processing systems},
  pages={3622--3631},
  year={2017}
}

Contents

  1. Introduction
  2. Dependencies
  3. Training options
  4. Usage
    1. Installation
    2. Synthetic Data
    3. Examples: MNIST, CIFAR10, CelebA, SVHN
    4. Custom data

Introduction

In the Bayesian GAN we propose conditional posteriors for the generator and discriminator weights, and marginalize these posteriors through stochastic gradient Hamiltonian Monte Carlo. Key properties of the Bayesian approach to GANs include (1) accurate predictions on semi-supervised learning problems; (2) minimal intervention for good performance; (3) a probabilistic formulation for inference in response to adversarial feedback; (4) avoidance of mode collapse; and (5) a representation of multiple complementary generative and discriminative models for data, forming a probabilistic ensemble.

We illustrate a multimodal posterior over the parameters of the generator. Each setting of these parameters corresponds to a different generative hypothesis for the data. We show here samples generated for two different settings of this weight vector, corresponding to different writing styles. The Bayesian GAN retains this whole distribution over parameters. By contrast, a standard GAN represents this whole distribution with a point estimate (analogous to a single maximum likelihood solution), missing potentially compelling explanations for the data.

Dependencies

This code has the following dependencies (version number crucial):

  • python 2.7
  • tensorflow==1.0.0

To install tensorflow 1.0.0 on linux please follow instructions at https://www.tensorflow.org/versions/r1.0/install/.

  • scikit-learn==0.17.1

You can install scikit-learn 0.17.1 with the following command

pip install scikit-learn==0.17.1

Alternatively, you can create a conda environment and set it up using the provided environment.yml file, as such:

conda env create -f environment.yml -n bgan

then load the environment using

source activate bgan

Usage

Installation

  1. Install the required dependencies
  2. Clone this repository

Synthetic Data

To run the synthetic experiment from the paper you can use bgan_synth script. For example, the following comand will train the Bayesian GAN (with D=100 and d=10) for 5000 iterations and store the results in .

./bgan_synth.py --x_dim 100 --z_dim 10 --numz 10 --out 
   

   

To run the ML GAN for the same data run

./bgan_synth.py --x_dim 100 --z_dim 10 --numz 1 --out 
   

   

bgan_synth has --save_weights, --out_dir, --z_dim, --numz, --wasserstein, --train_iter and --x_dim parameters. x_dim contolls the dimensionality of the observed data (x in the paper). For description of other parameters please see Training options.

Once you run the above two commands you will see the output of each 100th iteration in . So, for example, the Bayesian GAN's output at the 900th iteration will look like:

In contrast, the output of the standard GAN (corresponding to numz=1, which forces ML estimation) will look like:

indicating clearly the tendency of mode collapse in the standard GAN which, for this synthetic example, is completely avoided by the Bayesian GAN.

To explore the sythetic experiment further, and to generate the Jensen-Shannon divergence plots, you can check out the notebook synth.ipynb.

Unsupervised and Semi-Supervised Learning on benchmark datasets

MNIST, CIFAR10, CelebA, SVHN

bayesian_gan_hmc script allows to train the model on standard and custom datasets. Below we describe the usage of this script.

Data preparation

To reproduce the experiments on MNIST, CIFAR10, CelebA and SVHN datasets you need to prepare the data and use a correct --data_path.

  • for MNIST you don't need to prepare the data and can provide any --data_path;
  • for CIFAR10 please download and extract the python version of the data from https://www.cs.toronto.edu/~kriz/cifar.html; then use the path to the directory containing cifar-10-batches-py as --data_path;
  • for SVHN please download train_32x32.mat and test_32x32.mat files from http://ufldl.stanford.edu/housenumbers/ and use the directory containing these files as your --data_path;
  • for CelebA you will need to have openCV installed. You can find the download links for the data at http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html. You will need to create celebA folder with Anno and img_align_celeba subfolders. Anno must contain the list_attr_celeba.txt and img_align_celeba must contain the .jpg files. You will also need to crop the images by running datasets/crop_faces.py script with --data_path where is the path to the folder containing celebA. When training the model, you will need to use the same for --data_path;

Unsupervised training

You can run unsupervised learning by running the bayesian_gan_hmc script without --semi parameter. For example, use

./run_bgan.py --data_path 
   
     --dataset svhn --numz 10 --num_mcmc 2 --out_dir 

    
      --train_iter 75000 --save_samples --n_save 100

    
   

to train the model on the SVHN dataset. This command will run the method for 75000 iterations and save samples every 100 iterations. Here must lead to the directory where the results will be stored. See data preparation section for an explanation of how to set . See training options section for a description of other training options.

         

Semi-supervised training

To run the semi-supervised experiments you can use the run_bgan_semi.py script, which offers many options including the following:

  • --out_dir: path to the folder, where the outputs will be stored
  • --n_save: samples and weights are saved every n_save iterations; default 100
  • --z_dim: dimensionalit of z vector for generator; default 100
  • --data_path: path to the data; see data preparation for a detailed discussion; this parameter is required
  • --dataset: can be mnist, cifar, svhn or celeb; default mnist
  • --batch_size: batch size for training; default 64
  • --prior_std: std of the prior distribution over the weights; default 1
  • --num_gen: same as J in the paper; number of samples of z to integrate it out for generators; default 1
  • --num_disc: same as J_D in the paper; number of samples of z to integrate it out for discriminators; default 1
  • --num_mcmc: same as M in the paper; number of MCMC NN weight samples per z; default 1
  • --lr: learning rate used by the Adam optimizer; default 0.0002
  • --optimizer: optimization method to be used: adam (tf.train.AdamOptimizer) or sgd (tf.train.MomentumOptimizer); default adam
  • --N: number of labeled samples for semi-supervised learning
  • --train_iter: number of training iterations; default 50000
  • --save_samples: save generated samples during training
  • --save_weights: save weights during training
  • --random_seed: random seed; note that setting this seed does not lead to 100% reproducible results if GPU is used

You can also run WGANs with --wasserstein or train an ensemble of DCGANs with --ml_ensemble . In particular you can train a DCGAN with --ml.

You can train the model in semi-supervised setting by running bayesian_gan_hmc with --semi option. Use -N parameter to set the number of labeled examples to train on. For example, use

./run_bgan_semi.py --data_path 
   
     --dataset cifar --num_gen 10 --num_mcmc 2
--out_dir 
    
      --train_iter 100000 --N 4000 --lr 0.0005

    
   

to train the model on CIFAR10 dataset with 4000 labeled examples. This command will train the model for 100000 iterations and store the outputs in folder.

To train the model on MNIST with 100 labeled examples you can use the following command.

./bayesian_gan_hmc.py --data_path 
   
    / --dataset mnist --num_gen 10 --num_mcmc 2
--out_dir 
    
      --train_iter 100000 -N 100 --semi --lr 0.0005

    
   

Custom data

To train the model on a custom dataset you need to define a class with a specific interface. Suppose we want to train the model on the digits dataset. This datasets consists of 8x8 images of digits. Let's suppose that the data is stored in x_tr.npy, y_tr.npy, x_te.npy and y_te.npy files. We will assume that x_tr.npy and x_te.npy have shapes of the form (?, 8, 8, 1). We can then define the class corresponding to this dataset in bgan_util.py as follows.

class Digits:

    def __init__(self):
        self.imgs = np.load('x_tr.npy') 
        self.test_imgs = np.load('x_te.npy')
        self.labels = np.load('y_tr.npy')
        self.test_labels = np.load('y_te.npy')
        self.labels = one_hot_encoded(self.labels, 10)
        self.test_labels = one_hot_encoded(self.test_labels, 10) 
        self.x_dim = [8, 8, 1]
        self.num_classes = 10

    @staticmethod
    def get_batch(batch_size, x, y): 
        """Returns a batch from the given arrays.
        """
        idx = np.random.choice(range(x.shape[0]), size=(batch_size,), replace=False)
        return x[idx], y[idx]

    def next_batch(self, batch_size, class_id=None):
        return self.get_batch(batch_size, self.imgs, self.labels)

    def test_batch(self, batch_size):
        return self.get_batch(batch_size, self.test_imgs, self.test_labels)

The class must have next_batch and test_batch, and must have the imgs, labels, test_imgs, test_labels, x_dim and num_classes fields.

Now we can import the Digits class in bayesian_gan_hmc.py

from bgan_util import Digits

and add the following lines to to the processing of --dataset parameter.

if args.dataset == "digits":
    dataset = Digits()

After this preparation is done, we can train the model with, for example,

./run_bgan_semi.py --data_path 
   
     --dataset digits --num_gen 10 --num_mcmc 2 
--out_dir 
    
      --train_iter 100000 --save_samples

    
   

Acknowledgements

We thank Pavel Izmailov and Ben Athiwaratkun for help with stress testing this code and creating the tutorial.

Owner
Andrew Gordon Wilson
Machine Learning Professor at New York University.
Andrew Gordon Wilson
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
LBK 20 Dec 02, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation'

OD-Rec Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation' Paper, saved teacher models and Andro

Xin Xia 11 Nov 22, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022