A port of muP to JAX/Haiku

Overview

MUP for Haiku

This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to suggestions on improving the usability.

Installation

pip install haiku-mup

Learning rate demo

These plots show the evolution of the optimal learning rate for a 3-hidden-layer MLP on MNIST, trained for 10 epochs (5 trials per lr/width combination).

With standard parameterization, the learning rate optimum (w.r.t. training loss) continues changing as the width increases, but μP keeps it approximately fixed:

Here's the same kind of plot for 3 layer transformers on the Penn Treebank, this time showing Validation loss instead of training loss, scaling both the number of heads and the embedding dimension simultaneously:

Note that the optima have the same value for n_embd=80. That's because the other hyperparameters were tuned using an SP model with that width, so this shouldn't be biased in favor of μP.

Usage

from functools import partial

import jax
import jax.numpy as jnp
import haiku as hk
from optax import adam, chain

from haiku_mup import apply_mup, Mup, Readout

class MyModel(hk.Module):
    def __init__(self, width, n_classes=10):
        super().__init__(name='model')
        self.width = width
        self.n_classes = n_classes

    def __call__(self, x):
        x = hk.Linear(self.width)(x)
        x = jax.nn.relu(x)
        return Readout(2)(x) # 1. Replace output layer with Readout layer

def fn(x, width=100):
    with apply_mup(): # 2. Modify parameter creation with apply_mup()
        return MyModel(width)(x)

mup = Mup()

init_input = jnp.zeros(123)
base_model = hk.transform(partial(fn, width=1))

with mup.init_base(): # 3. Use this context manager when initializing the base model
    hk.init(fn, jax.random.PRNGKey(0), init_input) 

model = hk.transform(fn)

with mup.init_target(): # 4. Use this context manager when initializng the target model
    params = model.init(jax.random.PRNGKey(0), init_input)

model = mup.wrap_model(model) # 5. Modify your model with Mup

optimizer = optax.adam(3e-4)
optimizer = mup.wrap_optimizer(optimizer, adam=True) # 6. Use wrap_optimizer to get layer specific learning rates

# Now the model can be trained as normal

Summary

  1. Replace output layers with Readout layers
  2. Modify parameter creation with the apply_mup() context manager
  3. Initialize a base model inside a Mup.init_base() context
  4. Initialize the target model inside a Mup.init_target() context
  5. Wrap the model with Mup.wrap_model
  6. Wrap optimizer with Mup.wrap_optimizer

Shared Input/Output embeddings

If you want to use the input embedding matrix as the output layer's weight matrix make the following two replacements:

# old: embedding_layer = hk.Embed(*args, **kwargs)
# new:
embedding_layer = haiku_mup.SharedEmbed(*args, **kwargs)
input_embeds = embedding_layer(x)

#old: output = hk.Linear(n_classes)(x)
# new:
output = haiku_mup.SharedReadout()(embedding_layer.get_weights(), x) 
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
Rainbow: Combining Improvements in Deep Reinforcement Learning

Rainbow Rainbow: Combining Improvements in Deep Reinforcement Learning [1]. Results and pretrained models can be found in the releases. DQN [2] Double

Kai Arulkumaran 1.4k Dec 29, 2022
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022