Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

Related tags

Deep LearningCloudAAE
Overview

CloudAAE

This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds"

Files

  1. log: directory to store log files during training.
  2. losses: loss functions for training.
  3. models: a python file defining model structure.
  4. object_model_tfrecord: full object models for data synthesizing and visualization purpose.
  5. tf_ops: tensorflow implementation of sampling operations (credit: Haoqiang Fan, Charles R. Qi).
  6. trained_network: a trained network.
  7. utils: utility files for defining model structure.
  8. ycb_video_data_tfRecords: synthetic training data and real test data for the YCB video dataset.
  9. evaluate_cloudAAE_ycbv.py: script for testing object 6d pose estimation with a trained network on test set in YCB video dataset.
  10. train_cloudAAE_ycbv.py: script for training a network on synthetic data for YCB objects.

Requirements

Test a trained network

  1. Testing data in tfrecord format is available
  • Download zip file
  • Unzip and place all files in ycb_video_data_tfRecords/test_real/
  1. After activate tensorflow
python evaluate_cloudAAE_ycbv.py --trained_model trained_network/20200908-204328/model.ckpt --batch_size 1 --target_cls 0
  • --trained_model: directory to trained model (*.ckpt).
  • --batch_size: 1.
  • --target_class: target class for pose estimation.
  • Translation prediction is in unit meter.
  • Rotation prediction is in axis-angle format.
  1. Result
  • If you turn on visualization with b_visual=True, you will see the following displays which are partially observed point cloud segments (red) overlaid with object model (green) with pose estimates. The reconstructed point cloud is also presented (blue).
  • The coordinate is the object coordinate, object segment is viewed in the camera coordinate

Train a network

  1. Training data is created synthetically using 3D object model and 6D poses.
  • The 6D pose and class id of target object are in ycb_video_data_tfRecords/train_syn/
  • The data synthesis pipeline takes the target 3D object model and creates a segment of the object in the desired 6D pose. Below is two examples of synthetic segment (red), two real segments (red) are also shown for comparison.

  1. Run script
python train_cloudAAE_ycbv.py
  1. Log files and trained model is store in log

Citation

If you use this code in an academic context, please consider cite the paper:

BiBTeX:

@inproceedings{gao2020cloudpose,
      title={CloudAAE: Learning 6D Object Pose Regression with On-line Data
Synthesis on Point Clouds},
      author={G. Gao, M. Lauri, X. Hu, J. Zhang and S. Frintrop},
      booktitle={ICRA},
      year={2021}
    }

Link to Paper

TBA

Acknowledgement

Owner
Gee
I like point cloud.
Gee
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
Hierarchical Uniform Manifold Approximation and Projection

HUMAP Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HU

Wilson Estécio Marcílio Júnior 160 Jan 06, 2023
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04

Wentao Zhang 15 Nov 28, 2022
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
Space Ship Simulator using python

FlyOver Basic space-ship simulator using python How to run? Just double click run.py What modules do i need? All modules that i currently using is bui

0 Oct 09, 2022
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022
Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022) All scripts were written and

0 Jan 27, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023