DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

Related tags

Deep LearningDCT-Mask
Overview

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

This project hosts the code for implementing the DCT-MASK algorithms for instance segmentation.

[DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation] Xing Shen*, Jirui Yang*, Chunbo Wei, Bing Deng, Jianqiang Huang, Xiansheng Hua Xiaoliang Cheng, Kewei Liang

In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition(CVPR 2021)

arXiv preprint(arXiv:2011.09876)

Contributions

  • We propose a high-quality and low-complexity mask representation for instance segmentation, which encodes the high-resolution binary mask into a compact vector with discrete cosine transform.
  • With slight modifications, DCT-Mask could be integrated into most pixel-based frameworks, and achieve significant and consistent improvement on different datasets, backbones, and training schedules. Specifically, it obtains more improvements for more complex backbones and higher-quality annotations.
  • DCT-Mask does not require extra pre-processing or pre-training. It achieves high-resolution mask prediction at a speed similar to low-resolution.

Installation

Requirements

  • PyTorch ≥ 1.5 and fvcore == 0.1.1.post20200716

This implementation is based on detectron2. Please refer to INSTALL.md. for installation and dataset preparation.

Usage

The codes of this project is on projects/DCT_Mask/

Train with multiple GPUs

cd ./projects/DCT_Mask/
./train1.sh

Testing

cd ./projects/DCT_Mask/
./test1.sh

Model ZOO

Trained models on COCO

Model Backbone Schedule Multi-scale training Inference time (s/im) AP (minival) Link
DCT-Mask R-CNN R50 1x Yes 0.0465 36.5 download(Fetch code: xpdm)
DCT-Mask R-CNN R101 3x Yes 0.0595 39.9 download(Fetch code: 7q6x)
DCT-Mask R-CNN RX101 3x Yes 0.1049 41.2 download(Fetch code: ufw2)
Casecade DCT-Mask R-CNN R50 1x Yes 0.0630 37.5 download(Fetch code: yqxp)
Casecade DCT-Mask R-CNN R101 3x Yes 0.0750 40.8 download(Fetch code: r8xv)
Casecade DCT-Mask R-CNN RX101 3x Yes 0.1195 42.0 download(Fetch code: pdej)

Trained models on Cityscapes

Model Data Backbone Schedule Multi-scale training AP (val) Link
DCT-Mask R-CNN Fine-Only R50 1x Yes 37.0 download(Fetch code: dn7i)
DCT-Mask R-CNN CoCo-Pretrain +Fine R50 1x Yes 39.6 download(Fetch code: ntqf)

Notes

  • We observe about 0.2 AP noise in COCO.
  • High variance observed in CityScapes when trained on fine annotations only. We report the median of 5 runs AP in the article (i.e. 35.6), while in this repo we report the best results (37.0).
  • Initialized from COCO pre-training will reduce the variance on CityScapes as well as increasing mask AP.
  • The inference time is measured on single GPU with batchsize 1. All GPUs are NVIDIA V100.
  • Lvis 0.5 is used for evaluation.

Contributing to the project

Any pull requests or issues are welcome.

If there is any problem with this project, please contact Xing Shen.

Citations

Please consider citing our papers in your publications if the project helps your research.

License

  • MIT License.
Owner
Alibaba Cloud
More Than Just Cloud
Alibaba Cloud
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS2021

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition Project Page | Video | Paper Implementation for Neural-PIL. A novel method wh

Computergraphics (University of Tübingen) 64 Dec 29, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 01, 2023
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021) Contact 0 Jan 11, 2022

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021