code associated with ACL 2021 DExperts paper

Related tags

Deep LearningDExperts
Overview

DExperts

Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at ACL 2021. If you have any questions, please feel free to create a Github issue or reach out to the first author at [email protected].

Create a conda environment called dexperts with

conda env create -f environment.yml

Toxicity

To generate continuations with DExperts and score them for toxicity using the PerspectiveAPI toxicity scorer, run the following command.

OUTPUT_DIR=generations/toxicity/dexperts
PROMPTS_DATASET=prompts/nontoxic_prompts-10k.jsonl

python -m scripts.run_toxicity_experiment \
    --use-dataset \
    --dataset-file $PROMPTS_DATASET \
    --model-type dexperts \
    --model gpt2-large \
    --nontoxic-model $MODEL_DIR/finetuned_gpt2_nontoxic \
    --toxic-model $MODEL_DIR/finetuned_gpt2_toxic \
    --perspective-rate-limit $API_RATE \
    --alpha 2.0 \
    --filter_p 0.9 \
    $OUTPUT_DIR

In general, model_type is one of gpt2 (the base model), dexperts (our method), and pplm. With an OpenAI API key for GPT-3 access, you can also try gpt3 and dexperts-gpt3. Different methods have different additional parameters to specify; to see the commands we used for each method in our paper, please look under scripts/our_scripts/toxicity. For experiments with GeDi, we directly used the original authors' codebase.

When model_type is dexperts, we can steer away from toxicity using only a toxic anti-expert. To do this, leave --nontoxic-model empty, and DExperts will re-use the base model as the expert. The hyperparameter alpha controls the strength of steering over the base model. We use filter_p to use the nucleus from the base model, as described in Section 2.2 of our paper.

This script will create three files in OUTPUT_DIR: generations.jsonl with all of the generated continuations, perspective.jsonl with all the scores from Perspective API, and prompted_gens_[model_type].jsonl, which collates the previous two files.

To try a model's output on your own prompts, simply create your own prompts file! To see the format of the prompts file, see prompts/toy_prompt.jsonl.

Sentiment

To generate continuations with DExperts conditioned on sentiment prompts and score them for sentiment using HuggingFace's sentiment classifier, run the following command.

PROMPTS_DATASET=prompts/sentiment_prompts-10k/neutral_prompts.jsonl
OUTPUT_DIR=generations/sentiment/neutral_prompts/dexperts/positive/

python -m scripts.run_sentiment_experiment \
    --use-dataset \
    --dataset-file $PROMPTS_DATASET \
    --model-type dexperts \
    --model gpt2-large \
    --pos-model $MODEL_DIR/finetuned_gpt2_positive \
    --neg-model $MODEL_DIR/finetuned_gpt2_negative \
    --alpha 3.2 \
    --filter_p 0.9 \
    $OUTPUT_DIR

The model_type can be any of the options from before, with the addition of ctrl. Again, the full commands used for each method can be found under scripts/our_scripts/sentiment.

When model_type is dexperts, we always interpret --pos-model as the expert and --neg-model as the anti-expert; for negative steering, use alpha < 0. By leaving one of --pos-model or --neg-model empty, DExperts will re-use the base model as the missing expert or anti-expert.

Evaluation

To evaluate generated output for fluency and diversity, run the following command. The GENERATIONS_FILE should have the format prompted_gens_[model_type].jsonl.

python -m scripts.evaluation.evaluate_generations \
    --generations_file $GENERATIONS_FILE

Notebooks

Our jupyter notebooks are in notebooks/. To obtain the same tables and plots that appear in the paper, look in sentiment_results.ipynb, toxicity_results.ipynb, and human_eval_results.ipynb. To create your own prompts dataset with a couple lines of code, you can get started with prompts_playground.ipynb. Sample and compare generations from each model with review_sentiment_generations.ipynb and review_toxicity_generations.ipynb.

Downloading the original data and models from our paper

To download the prompts we used for evaluation, generations output by each model, and finetuning datasets from our paper, ensure you have gdown installed, then run the following commands inside the dexperts/ root directory. Descriptions of the contents of each of these folders can be found within the folder.

# prompts
gdown https://drive.google.com/uc?id=1bI49aJvmEoLdqSNb30JkORdsNJmv7Aep
unzip prompts.zip && rm prompts.zip
# generations
gdown https://drive.google.com/uc?id=10jL1-eCv8w3oeGFgA_jrel0enrNVdFW7
unzip generations.zip && rm generations.zip
# datasets
gdown https://drive.google.com/uc?id=1MeEjLPxQ77AYtzL0nd1hYJTlL8OJgHkI
unzip datasets.zip && rm datasets.zip

To download models from our paper,

mkdir models
cd models
# (anti-)expert models
gdown https://drive.google.com/uc?id=1HSrNMrq4OZ3nyTobNd2TZFcB5NYwluu-
unzip experts.zip && rm experts.zip
# DAPT models
gdown https://drive.google.com/uc?id=1eDlRU04s-H1elWWtPuDoBNAqyoqj3_p9
unzip dapt.zip && rm dapt.zip
# PPLM classifiers
gdown https://drive.google.com/uc?id=17s26QM9vJp9hCUkRBrDx5Wa__4BlrqGL
unzip pplm_classifiers.zip && rm pplm_classifiers.zip

Citation

@inproceedings{liu-etal-2021-dexperts,
    title = "{DExperts}: Decoding-Time Controlled Text Generation with Experts and Anti-Experts",
    author = "Alisa Liu and Maarten Sap and Ximing Lu and Swabha Swayamdipta and Chandra Bhagavatula and Noah A. Smith and Yejin Choi",
    booktitle = "Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP)",
    year = "2021",
    url = "https://arxiv.org/abs/2105.03023",
}

This code was built on top of allenai/real-toxicity-prompts and with inspiration from yangkevin2/naacl-2021-fudge-controlled-generation.

Owner
Alisa Liu
Alisa Liu
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
darija <-> english dictionary

darija-dictionary Having advanced IT solutions that are well adapted to the Moroccan context passes inevitably through understanding Moroccan dialect.

DODa 102 Jan 01, 2023
PyTorch Implementation of ECCV 2020 Spotlight TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images

TuiGAN-PyTorch Official PyTorch Implementation of "TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images" (ECCV 2020 Spotligh

181 Dec 09, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
official code for dynamic convolution decomposition

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021) A pytorch implementation of DCD. If you use this code in your research please cons

Yunsheng Li 110 Nov 23, 2022
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Yuki M. Asano 249 Dec 22, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Sematic-Segmantation - Semantic Segmentation on MIT ADE20K dataset in PyTorch

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch impleme

Berat Eren Terzioğlu 4 Mar 22, 2022
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
🦕 NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

🦕 nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

NanoSaur 162 Dec 09, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
PyTorch implementation of Higher Order Recurrent Space-Time Transformer

Higher Order Recurrent Space-Time Transformer (HORST) This is the official PyTorch implementation of Higher Order Recurrent Space-Time Transformer. Th

13 Oct 18, 2022
Corruption Invariant Learning for Re-identification

Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS

Minghui Chen 73 Dec 08, 2022