official code for dynamic convolution decomposition

Related tags

Deep Learningdcd
Overview

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021)

A pytorch implementation of DCD. If you use this code in your research please consider citing

@article{li2021revisiting, title={Revisiting Dynamic Convolution via Matrix Decomposition}, author={Li, Yunsheng and Chen, Yinpeng and Dai, Xiyang and Liu, Mengchen and Chen, Dongdong and Yu, Ye and Yuan, Lu and Liu, Zicheng and Chen, Mei and Vasconcelos, Nuno}, journal={arXiv preprint arXiv:2103.08756}, year={2021} }

Requirements

  • Hardware: PC with NVIDIA Titan GPU.
  • Software: Ubuntu 16.04, CUDA 10.0, Anaconda3, pytorch 1.0.0
  • Python package
    • conda install --quiet --yes pytorch==1.0.0 torchvision==0.2.1 cuda100 -c pytorch
    • pip install tensorboard tensorboardX pillow==6.1

Evaluate DCD on ImageNet

The pre-trained model can be downloaded here ResNet-50 and MobileNetV2x1.0

DCD for ResNet-50

python main.py -a resnet50_dcd -d /path/to/imagenet/ -b 256 -c /path/to/output -j 48 --input-size 224 --dropout 0.1 --weight /path/to/resnet50_dcd.pth.tar --evaluate

DCD for MobileNetV2x1.0

python main.py -a mobilenetv2_dcd -d /path/to/imagenet/ -b 512 -c /path/to/output --width-mult 1.0 -j 48 --input-size 224 --dropout 0.1 --fc-squeeze 16 --weight mv2x1.0_dcd.pth.tar --evaluate

Train DCD on ImageNet

DCD for ResNet-50

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py -a resnet50_dcd -d /path/to/imagenet/ -b 256 --epochs 120 --lr-decay schedule --lr 0.1 --wd 1e-4 -c /path/to/output -j 48 --input-size 224 --label-smoothing 0.1 --dropout 0.1 --mixup 0.2

DCD for MobileNetV2x1.0

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py -a mobilenetv2_dcd -d /path/to/imagenet/ --epochs 300 --lr-decay cos --lr 0.1 --wd 2e-5 -c /path/to/output --width-mult 1.0 -j 48 --input-size 224 --label-smoothing 0.1 --dropout 0.2 -b 512 --mixup 0.2 --fc-squeeze 16
Owner
Yunsheng Li
Yunsheng Li
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation

Configurations Change HOME_PATH in CONFIG.py as the current path Data Prepare CENSINCOME Download data Put census-income.data and census-income.test i

2 Aug 14, 2022
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020
Official Implementation of SWAD (NeurIPS 2021)

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21) Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha 97 Dec 20, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022