Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Overview

Video Class Agnostic Segmentation

[Method Paper] [Benchmark Paper] [Project] [Demo]

Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation Benchmark in Autonomous Driving" in Workshop on Autonomous Driving, CVPR 2021.



Installation

This repo is tested under Python 3.6, PyTorch 1.4

  • Download Required Packages
pip install -r requirements.txt
pip install "git+https://github.com/cocodataset/panopticapi.git"
  • Setup mmdet
python setup.py develop

Motion Segmentation Track

Dataset Preparation

Inference

  • Download Trained Weights on Ego Flow Suppressed, trained on Cityscapes and KITTI-MOTS

  • Modify Configs according to dataset path + Image/Annotation/Flow prefix

configs/data/kittimots_motion_supp.py
configs/data/cscapesvps_motion_supp.py
  • Evaluate CAQ,
python tools/test_eval_caq.py CONFIG_FILE WEIGHTS_FILE

CONFIG_FILE: configs/infer_kittimots.py or configs/infer_cscapesvps.py

  • Qualitative Results
python tools/test_vis.py CONFIG_FILE WEIGHTS_FILE --vis_unknown --save_dir OUTS_DIR
  • Evaluate Image Panoptic Quality, Note: evaluated on 1024x2048 Images
python tools/test_eval_ipq.py configs/infer_cscapesvps_pq.py WEIGHTS_FILE --out PKL_FILE

Training

Coming Soon ...

Open-set Segmentation Track

Coming soon ...

Acknowledgements

Dataset and Repository relied on these sources:

  • Voigtlaender, Paul, et al. "Mots: Multi-object tracking and segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.
  • Kim, Dahun, et al. "Video panoptic segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.
  • Wang, Xinlong, et al. "Solo: Segmenting objects by locations." European Conference on Computer Vision. Springer, Cham, 2020.
  • This Repository built upon SOLO Code

Citation

@article{siam2021video,
      title={Video Class Agnostic Segmentation Benchmark for Autonomous Driving}, 
      author={Mennatullah Siam and Alex Kendall and Martin Jagersand},
      year={2021},
      eprint={2103.11015},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contact

If you have any questions regarding the dataset or repository, please contact [email protected].

Owner
Mennatullah Siam
PhD Student
Mennatullah Siam
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023
MISSFormer: An Effective Medical Image Segmentation Transformer

MISSFormer Code for paper "MISSFormer: An Effective Medical Image Segmentation Transformer". Please read our preprint at the following link: paper_add

Fong 22 Dec 24, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
Official git for "CTAB-GAN: Effective Table Data Synthesizing"

CTAB-GAN This is the official git paper CTAB-GAN: Effective Table Data Synthesizing. The paper is published on Asian Conference on Machine Learning (A

30 Dec 26, 2022
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy

Lequan Yu 47 Nov 24, 2022
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Daniel Roich 58 Dec 24, 2022
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
HTSeq is a Python library to facilitate processing and analysis of data from high-throughput sequencing (HTS) experiments.

HTSeq DEVS: https://github.com/htseq/htseq DOCS: https://htseq.readthedocs.io A Python library to facilitate programmatic analysis of data from high-t

HTSeq 57 Dec 20, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022