Text-to-Image generation

Overview

Generate vivid Images for Any (Chinese) text

teaser

CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain.

  • Read our paper CogView: Mastering Text-to-Image Generation via Transformers on ArXiv for a formal introduction. The PB-relax and Sandwich-LN can also help you train large and deep transformers stably (e.g. eliminating NaN losses).
  • Visit our demo at Github Page or Wudao! (Without post-selection or super-resolution, currently only supports simplified Chinese input, but one can translate text from other languages into Chinese for input. Note: Wudao provides faster access for users from China mainland.)
  • Download our pretrained models from Project Wudao-Wenhui(悟道-文汇).
  • Cite our paper if you find our work is helpful~
@article{ding2021cogview,
  title={CogView: Mastering Text-to-Image Generation via Transformers},
  author={Ding, Ming and Yang, Zhuoyi and Hong, Wenyi and Zheng, Wendi and Zhou, Chang and Yin, Da and Lin, Junyang and Zou, Xu and Shao, Zhou and Yang, Hongxia and Tang, Jie},
  journal={arXiv preprint arXiv:2105.13290},
  year={2021}
  • Google Colab Two contributors successfully setup up CogView on Colab Links to Colab!

Getting Started

Setup

  • Hardware: Linux servers with Nvidia V100s or A100s are recommended, but it is also okay to run the pretrained models with smaller --max-inference-batch-size or training smaller models on less powerful GPUs.

  • Environment (Option 1): Please first install PyTorch (>=1.7.0) and apex, and then install other dependencies via pip install -r requirements.txt.

  • Environment (Option 2): We prepare a docker image in case that you fail to handle the environments. Pull the image, create a (background) container and get into it via:

    docker pull cogview/cuda111_torch181_deepspeed040
    ./env/start_docker.sh && docker exec -it bg-cogview bash
    
    cd /root/cogview # in the container
    

Download

  1. Download the image tokenizer vqvae_hard_biggerset_011.pt from BAAI website or Tsinghua Cloud. Place the file under pretrained/vqvae.
wget https://cloud.tsinghua.edu.cn/f/71607a5dca69417baa8c/?dl=1 -O pretrained/vqvae/vqvae_hard_biggerset_011.pt
  1. Download models from Project Wudao-Wenhui.

    FileName Discription
    cogview-base.tar The pretrained text-to-image model.
    cogview-caption.tar Finetuned image-to-text model, also used for reranking.
    cogview-sr.tar Finetuned super-resolution model. (warning: it runs slow.)

    Uncompress them into pretrained/cogview/. The following command should be modified based on the model name.

    tar -xvf cogview-{base, sr, caption}.tar -C pretrained/cogview/
    
  2. (Only for training tutorial, skip it for inference.) Download a small "bird-and-animal" example dataset from our link at Tsinghua Cloud.

wget https://cloud.tsinghua.edu.cn/f/1e4963ec8ac84941ba68/?dl=1 -O data/bird_animal.bin

Run CogView! (Model Inference)

We encapsulate the generation functions into scripts. See generate_samples.py and arguments.py for details.

Text-to-Image Generation

Write text queries (one per line) into input.txt and run:

./scripts/text2image.sh --debug

The results will in a new folder samples_text2image/.

Arguments useful in inference are mainly:

  • --input-source [path or "interactive"]. The path of the input file, can also be "interactive", which will launch a CLI.
  • --output-path [path]. The folder containing the results.
  • --batch-size [int]. The number of samples will be generated per query.
  • --max-inference-batch-size [int]. Maximum batch size per forward. Reduce it if OOM.
  • --debug. Only save concatenated images for all generated samples, and name them by input text and date.
  • --with-id. When it toggled, you must specify an "id" before each input, e.g. 001\t一个漂亮的女孩, \t denoting TAB (NOT space). It will generate batch-size split images in a folder named "id" for each input. Confict with --debug.
  • --device [int]. Running on which GPU.

Super-resolution

Run the following script and input text\t{image_path}, where {image_path} means the path of a previously generated image.

./scripts/super_resolution.sh

Note: It is only effective for generated images from our Image Tokenizer (due to the token distribution).

Image-to-Text

The input is "one image path per line", and will print the results to stdout.

./scripts/image2text.sh

Note: Not optimized for this task, so it might not very competitive (but okay). We will consider to release a version funetuning for a longer period on this task in the future. (TODO)

Post-selection

This application only takes file inputs, where each line is {text}\t{image_path1}\t{image_path2}\t{image_path3}.... The output is {output_path}/scores.txt, a line of a list of scores, following a line from inputs.

./scripts/post_selection.sh

Note: In the released codes, for simplicity, we did not expose the raw API , which supports some advanced generation modes, e.g. text and part of image.

Training

Here we use a subset of our dataset from bird-and-animal for tutorial. The binary dataset is generated by our cogdata toolkit. Please wait for a formal release with tutorials of cogdata (although it is available now).

Single Node

After downloading the dataset, directly run

./scripts/pretrain_single_node.sh

Multiple Nodes

If you want to train the models on multiple servers inter-connected by infiniband without a shared file system (you may need pdsh to accelerate this process):

  1. On each server, use git clone to download this repo, and make sure the data (LMDB format) are moved into the data subfolder.
  2. On each server, echo "ip1 ip2 <other IPs>" > ./docker/ip_list.txt, and then start the docker by ./env/start_docker.sh.
  3. Get into the docker on the first node container via docker exec -it bg-cogview bash.
  4. Get into /root/cogview and run ./scripts/pretrain_multiple_nodes.sh. You may need to change the config (especially OPTIONS_NCCL) in the shell script.

See the arguments.py for advanced functions for training. TODO

Gallery

more_samples

Owner
THUDM
Data Mining Research Group at Tsinghua University
THUDM
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Little tool in python to watch anime from the terminal (the better way to watch anime)

ani-cli Script working again :), thanks to the fork by Dink4n for the alternative approach to by pass the captcha on gogoanime A cli to browse and wat

Harshith 4.5k Dec 31, 2022
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide.

SARS-CoV-2 processing requests Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide. Prerequisites This autom

useGalaxy.eu 17 Aug 13, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022