Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Related tags

Deep Learninglorien
Overview

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Build Status codecov.io

Lorien is an infrastructure to massively explore/benchmark the best schedules of given deep learning models. Lorien is deep learning compiler (DLC) agnostic, so one can easily implement a Lorien dialect to support a new DLC.

Motivation

Although auto-tuning frameworks for deep learning compilers (e.g., TVM, Halide) are capable of delivering high-performance operators that match or even beat vendor kernel libraries, auto-tuning a deep learning model could take days or even weeks, especially for the model with many workloads like ResNet-152 or Inception V3.

With such a long tuning time, one key question To maintain the best user experience during deep model developments and deployments is How to promptly deliver schedules with reasonably good performance upon user requests? Accordingly, we design and implement Lorien to remove the following obstacles:

  1. Tuning Process Scalability and Stability. Long tuning time affects not only the time-to-market but the stability. To the best of our knowledge, none of existing auto-tuning frameworks is designed for tuning on multiple machines, and none of them consider fault tolerance. The tuning process, hence, has to be manually started over if it was accidentally interrupted. This is crucial especially on edge devices, which are less reliable than cloud instances and may fail frequently due to overheat or other factors.

  2. Tuning Result Management. Although almost all auto-tuning frameworks provide mechanisms to serialize tuning results for future applications, all of them use file-based mechanism and have different formats. As a result, engineers have additional work to orchestrate the data for efficient usage.

  3. Time to Deliver an Efficient Schedule. Even a database is constructed to serve most user requests, it is still possible that certain workloads are missing. However, modern auto-tuning frameworks usually leverage iterative search algorithms with on-device measurements, which usually take hours, to find an efficient schedule for an unseen workload. The unfavorably expensive querying/tuning overhead makes production deployment impractical.

Lorien is a unified and extensible infrastructure for delivering efficient deep learning workloads upon requests. Lorien allows auto-tuning deep learning frameworks to be easily plugged in as dialects, and supports large scale tuning on both cloud and edge platforms. The tuning results are managed in a NoSQL database with a unified data model that fits all auto-tuning frameworks. While the best schedules managed in the database can be used to compile deep learning models to achieve high performance, the tuning logs managed in a file system can also 1) enable more comprehensive performance analysis on different platforms, and 2) help train a performance cost model with an AutoML solution.

Please visit the official documentations for setup guideline and tutorials.

System Requirements

  • Python 3.6+

  • Amazon DynamoDB (local or aws): DynamoDB is used for storing and maintain the tuned schedules. You can choose to either of the following:

    1. Launch a local version using JVM on your machine, and specify endpoint URL (e.g. --db "endpoint_url: http://:8000") when invoking a tuning procses.

    2. Configure AWS credential on your machine to directly use AWS DynamoDB service. In this case, you do not have to specify any argument in tuning configurations.

  • AWS S3 (optional): S3 is used to store the full tuning logs (JSON files generated by AutoTVM). If you specify --commit-log-to bucket_name and configure an AWS credential on your machine, then all complete tuning logs will be uploaded to the S3 bucket for debugging or research prupose. Note that this is an optional requirement, so you can ignore the --commit-log-to argument if you do not want to keep full tuning logs.

  • AWS Batch (AWS ECR): You have to set up AWS batch computation environments, job queues, and job definitions in advance to use Lorien AWS batch worker for tuning. See this blog post for reference. You may also need to build an upload Lorien docker images to AWS ECR as the AWS batch job running container.

Docker Images

You can directly make use of pre-built Lorien docker images on Docker Hub, which includes two typs of images for CPU and CPU+CUDA platforms. The docker images have TVM deployed so you can launch a tuning process in the container after cloning Lorien. The docker image is also used for Lorien CI purpose.

Documentation

https://awslabs.github.io/lorien/

Citing Lorien

If you use Lorien in a scientific publication, please cite the following paper:

Cody Hao Yu, Xingjian Shi, Haichen Shen, Zhi Chen, Mu Li, Yida Wang, "Lorien: Efficient Deep Learning Workloads Delivery", Proceedings of the 12th ACM Symposium on Cloud Computing. 2021.

@inproceedings{yu2021lorien,
  title={Lorien: Efficient Deep Learning Workloads Delivery},
  author={Yu, Cody Hao and Shi, Xingjian and Shen, Haichen and Chen, Zhi and Li, Mu and Wang, Yida},
  booktitle={Proceedings of the Seventh ACM Symposium on Cloud Computing},
  year={2021}
}
Owner
Amazon Web Services - Labs
AWS Labs
Amazon Web Services - Labs
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
Conversational text Analysis using various NLP techniques

PyConverse Let me try first Installation pip install pyconverse Usage Please try this notebook that demos the core functionalities: basic usage noteb

Rita Anjana 158 Dec 25, 2022
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️

GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️ This repo contains a PyTorch implementation of the original GAT paper ( 🔗 Veličković et

Aleksa Gordić 1.9k Jan 09, 2023
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023