Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

Overview

DE-DETRs

By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao

This repository is an official implementation of DE-DETR and DELA-DETR in the paper Towards Data-Efficient Detection Transformers.

For the implementation of DE-CondDETR and DELA-CondDETR, please refer to DE-CondDETR.

Introduction

TL; DR. We identify the data-hungry issue of existing detection transformers and alleviate it by simply alternating how key and value sequences are constructed in the cross-attention layer, with minimum modifications to the original models. Besides, we introduce a simple yet effective label augmentation method to provide richer supervision and improve data efficiency.

DE-DETR

Abstract. Detection Transformers have achieved competitive performance on the sample-rich COCO dataset. However, we show most of them suffer from significant performance drops on small-size datasets, like Cityscapes. In other words, the detection transformers are generally data-hungry. To tackle this problem, we empirically analyze the factors that affect data efficiency, through a step-by-step transition from a data-efficient RCNN variant to the representative DETR. The empirical results suggest that sparse feature sampling from local image areas holds the key. Based on this observation, we alleviate the data-hungry issue of existing detection transformers by simply alternating how key and value sequences are constructed in the cross-attention layer, with minimum modifications to the original models. Besides, we introduce a simple yet effective label augmentation method to provide richer supervision and improve data efficiency. Experiments show that our method can be readily applied to different detection transformers and improve their performance on both small-size and sample-rich datasets.

Label Augmentation

Main Results

The experimental results and model weights trained on Cityscapes are shown below.

Model Epochs mAP [email protected] [email protected] [email protected] [email protected] [email protected] Log & Model
DETR 300 11.7 26.5 9.3 2.6 9.2 25.6 Google Drive
DE-DETR 50 22.2 41.7 20.5 4.9 19.7 40.8 Google Drive
DELA-DETR 50 25.2 46.8 22.8 6.5 23.8 44.3 Google Drive

The experimental results and model weights trained on COCO 2017 are shown below.

Model Epochs mAP [email protected] [email protected] [email protected] [email protected] [email protected] Log & Model
DETR 50 33.6 54.6 34.2 13.2 35.7 53.5 Google Drive
DE-DETR 50 40.2 60.4 43.2 23.3 42.1 56.4 Google Drive
DELA-DETR 50 41.9 62.6 44.8 24.9 44.9 56.8 Google Drive

Note:

  1. The number of queries is increased from 100 to 300 in DELA-DETR.
  2. The performance of the model weights on Cityscapes is slightly different from that reported in the paper, because the results in the paper are the average of five repeated runs with different random seeds.

Installation

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4

  • Python>=3.7

  • PyTorch>=1.5.0, torchvision>=0.6.0 (following instructions here)

  • Detectron2>=0.5 for RoIAlign (following instructions here)

  • Other requirements

    pip install -r requirements.txt

Usage

Dataset preparation

The COCO 2017 dataset can be downloaded from here and the Cityscapes datasets can be downloaded from here. The annotations in COCO format can be obtained from here. Afterward, please organize the datasets and annotations as following:

data
└─ cityscapes
   └─ leftImg8bit
      |─ train
      └─ val
└─ coco
   |─ annotations
   |─ train2017
   └─ val2017
└─ CocoFormatAnnos
   |─ cityscapes_train_cocostyle.json
   |─ cityscapes_val_cocostyle.json
   |─ instances_train2017_sample11828.json
   |─ instances_train2017_sample5914.json
   |─ instances_train2017_sample2365.json
   └─ instances_train2017_sample1182.json

The annotations for down-sampled COCO 2017 dataset is generated using utils/downsample_coco.py

Training

Training DELA-DETR on Cityscapes

python -m torch.distributed.launch --nproc_per_node=2 --master_port=29501 --use_env main.py --dataset_file cityscapes --coco_path data/cityscapes --batch_size 4 --model dela-detr --repeat_label 2 --nms --num_queries 300 --wandb

Training DELA-DETR on down-sampled COCO 2017, with e.g. sample_rate=0.01

python -m torch.distributed.launch --nproc_per_node=2 --master_port=29501 --use_env main.py --dataset_file cocodown --coco_path data/coco --sample_rate 0.01 --batch_size 4 --model dela-detr --repeat_label 2 --nms --num_queries 300 --wandb

Training DELA-DETR on COCO 2017

python -m torch.distributed.launch --nproc_per_node=8 --master_port=29501 --use_env main.py --dataset_file coco --coco_path data/coco --batch_size 4 --model dela-detr --repeat_label 2 --nms --num_queries 300 --wandb

Training DE-DETR on Cityscapes

python -m torch.distributed.launch --nproc_per_node=2 --master_port=29501 --use_env main.py --dataset_file cityscapes --coco_path data/cityscapes --batch_size 4 --model de-detr --wandb

Training DETR baseline

Please refer to the detr branch.

Evaluation

You can get the pretrained model (the link is in "Main Results" session), then run following command to evaluate it on the validation set:

<training command> --resume <path to pre-trained model> --eval

Acknowledgement

This project is based on DETR and Deformable DETR. Thanks for their wonderful works. See LICENSE for more details.

Citing DE-DETRs

If you find DE-DETRs useful in your research, please consider citing:

@misc{wang2022towards,
      title={Towards Data-Efficient Detection Transformers}, 
      author={Wen Wang and Jing Zhang and Yang Cao and Yongliang Shen and Dacheng Tao},
      year={2022},
      eprint={2203.09507},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Wen Wang
Wen Wang
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL, and utterance id

TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL

3 Dec 26, 2022
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
PyVideoAI: Action Recognition Framework

This reposity contains official implementation of: Capturing Temporal Information in a Single Frame: Channel Sampling Strategies for Action Recognitio

Kiyoon Kim 22 Dec 29, 2022
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
Reproducing Results from A Hybrid Approach to Targeting Social Assistance

title author date output Reproducing Results from A Hybrid Approach to Targeting Social Assistance Lendie Follett and Heath Henderson 12/28/2021 html_

Lendie Follett 0 Jan 06, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022