The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

Overview

GUESS WHO

Main Links: [Github] [App]

Related Links: [CLIP] [Celeba]

The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face. To discover the image, the player must ask questions that can be answered with a binary response, such as "Yes and No". After every question made by the player, the images that don't share the same answer that the winning one are discarded automatically. The answer to the player's questions, and thus, the process of discarding the images will be established by CLIP. When all the images but one have been discarded, the game is over.

The "Guess Who?" game has a handicap when it uses real images, because it is necessary to always ensure that the same criteria are applied when the images are discarded. The original game uses images with characters that present simple and limited features like a short set of different types of hair colors, what makes it very easy to answer true or false when a user asks for a specific hair color. However, with real images it is possible to doubt about if a person is blond haired or brown haired, for example, and it is necessary to apply a method which ensures that the winning image is not discarded by mistake. To solve this problem, CLIP is used to discard the images that do not coincide with the winner image after each prompt. In this way, when the user asks a question, CLIP is used to classify the images in two groups: the set of images that continue because they have the same prediction than the winning image, and the discarded set that has the opposite prediction. The next figure shows the screen that is prompted after calling CLIP on each image in the game board, where the discarded images are highlighted in red and the others in green. CLIP

Select Images

The first step of the game is to select the images to play. The player can press a button to randomly change the used images, which are taken from the CelebA data set. This data set contains 202,599 face images of the size 178×218 from 10,177 celebrities, each annotated with 40 binary labels indicating facial attributes like hair color, gender and age. (see next figure). CLIP

Ask Questions

The game will allow the player to ask the questions in 4 different ways:

1. Default Question

This option consist on select a question from a list. A drop-down list allows the player to select the question to be asked from a group of pre-set questions, taken from the set of binary labels of the Celeba data set. Under the hood, each question is translated into a pair of textual prompts for the CLIP model to allow for the binary classification based on that question. When they are passed to CLIP along with an image, the model responds by giving a greater value to the prompt that is most related to the image. (see next figure). CLIP

2. Write your own prompt

This option is used to allow the player introducing a textual prompt for CLIP with his/her own words. The player text will be then confronted with the neutral prompt, "A picture of a person", and the pair of prompts will be passed to CLIP as in the previous case. (see next figure) CLIP

3. Write your own two prompts

In this case two text input are used to allow the player write two sentences. The player must use two opposite sentences, that is, with an opposite meaning. (see next figure). CLIP

4. Select a winner

This option does not use the CLIP model to make decisions, the player can simply choose one of the images as the winner and if the player hits the winning image, the game is over. (see next figure). CLIP

Punctuation

To motivate the players in finding the winning image with the minimum number of questions, a scoring system is established so that it begins with a certain number of points (100 in the example), and decreases with each asked question. The score is decreased by subtracting the number of remaining images after each question. Furthermore, there are two extra penalties. The first is applied when the player uses the option "Select a winner". This penalty depends on the number of remaining images, so that the fewer images are left, the bigger will be the penalty. Finally, the score is also decreased by two extra points if, after the player makes a question, no image can be discarded.

Acknowledgements

This work has been supported by the company Dimai S.L and next research projects: FightDIS (PID2020-117263GB-100), IBERIFIER (2020-EU-IA-0252:29374659), and the CIVIC project (BBVA Foundation Grants For Scientific Research Teams SARS-CoV-2 and COVID-19).

Owner
Arnau - DIMAI
Arnau - DIMAI
Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

feng wang 3 May 01, 2022
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
Demo notebooks for Qiskit application modules demo sessions (Oct 8 & 15):

qiskit-application-modules-demo-sessions This repo hosts demo notebooks for the Qiskit application modules demo sessions hosted on Qiskit YouTube. Par

Qiskit Community 46 Nov 24, 2022
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023