Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Overview

Neural Contours: Learning to Draw Lines from 3D Shapes

This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learning to Draw Lines from 3D Shapes" by Difan Liu, Mohamed Nabail, Aaron Hertzmann, Evangelos Kalogerakis.

[Arxiv]

Dependency

  • The project is developed on Ubuntu 16.04 with cuda9.0 + cudnn7.0. The code has been tested with PyTorch 1.1.0 (GPU version) and Python 3.6.8.
  • Python packages:
    • OpenCV (tested with 4.2.0)
    • PyYAML (tested with 5.3.1)
    • scikit-image (tested with 0.14.2)

Dataset and Weights

  • Pre-trained model is available here, please put it in data/model_weights:

    cd data/model_weights
    unzip weights.zip
    
  • download example testing data:

    cd data/example
    wget https://people.cs.umass.edu/~dliu/projects/NeuralContours/example.zip
    unzip example.zip
    
  • training data is available here.

Differentiable Geometry Branch

  • we use rtsc-1.6 to compute all the input geometric feature maps and lines. See here for details.
  • run geometry branch without NRM (Neural Ranking Module), this script takes thresholds of geometric lines as input:
    python -m scripts.geometry_branch_demo -sc 10.0 -r 10.0 -v 10.0 -ar 0.1 -model_name bumps_a -save_name data/output/bumps_a.png

Testing with NRM and ITB (Image Translation Branch)

  • Testing with NRM and ITB:
    python -m scripts.test -model_name bumps_a -save_name data/output/bumps_a_NCs.png
    Note that computation time depends on GPU performance, parameter setting and input 3D model. For reference, tested on GeForce GTX 1080 Ti, under default setting, Neural Contours of bumps_a takes about 12 minutes.

Cite:

@InProceedings{Liu_2020_CVPR,
author={Liu, Difan and Nabail, Mohamed and Hertzmann, Aaron and Kalogerakis, Evangelos},
title={Neural Contours: Learning to Draw Lines from 3D Shapes},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

Contact

To ask questions, please email.

Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
Convolutional Neural Networks

Darknet Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. D

Joseph Redmon 23.7k Jan 05, 2023
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022
Pytorch implementation of CVPR2020 paper “VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation”

VectorNet Re-implementation This is the unofficial pytorch implementation of CVPR2020 paper "VectorNet: Encoding HD Maps and Agent Dynamics from Vecto

120 Jan 06, 2023
State-Relabeling Adversarial Active Learning

State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The

10 Jul 14, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
Pytorch implementation of the Variational Recurrent Neural Network (VRNN).

VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th

emmanuel 251 Dec 17, 2022