State of the Art Neural Networks for Deep Learning

Overview

pyradox

This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2


Installation

pip install git+https://github.com/Ritvik19/pyradox.git

Usage

Modules

Module Description Input Shape Output Shape Usage
Rescale A layer that rescales the input: x_out = (x_in -mu) / sigma Arbitrary Same shape as input check here
Convolution 2D Applies 2D Convolution followed by Batch Normalization (optional) and Dropout (optional) 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Densely Connected Densely Connected Layer followed by Batch Normalization (optional) and Dropout (optional) 2D tensor with shape (batch_size, input_dim) 2D tensor with shape (batch_size, n_units) check here
DenseNet Convolution Block A Convolution block for DenseNets 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
DenseNet Convolution Block A Convolution block for DenseNets 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
DenseNet Transition Block A Transition block for DenseNets 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Dense Skip Connection Implementation of a skip connection for densely connected layer 2D tensor with shape (batch_size, input_dim) 2D tensor with shape (batch_size, n_units) check here
VGG Module Implementation of VGG Modules with slight modifications, Applies multiple 2D Convolution followed by Batch Normalization (optional), Dropout (optional) and MaxPooling 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Inception Conv Implementation of 2D Convolution Layer for Inception Net, Convolution Layer followed by Batch Normalization, Activation and optional Dropout 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Inception Block Implementation on Inception Mixing Block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Xception Block A customised implementation of Xception Block (Depthwise Separable Convolutions) 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net Block Implementation of Efficient Net Block (Depthwise Separable Convolutions) 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Conv Skip Connection Implementation of Skip Connection for Convolution Layer 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net Block Customized Implementation of ResNet Block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net V2 Block Customized Implementation of ResNetV2 Block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res NeXt Block Customized Implementation of ResNeXt Block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Inception Res Net Conv 2D Implementation of Convolution Layer for Inception Res Net: Convolution2d followed by Batch Norm 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Inception Res Net Block Implementation of Inception-ResNet block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) block 8 Block 17 Block 35
NAS Net Separable Conv Block Adds 2 blocks of Separable Conv Batch Norm 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
NAS Net Adjust Block Adjusts the input previous path to match the shape of the input
NAS Net Normal A Cell Normal cell for NASNet-A
NAS Net Reduction A Cell Reduction cell for NASNet-A
Mobile Net Conv Block Adds an initial convolution layer with batch normalization and activation 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Mobile Net Depth Wise Conv Block Adds a depthwise convolution block. A depthwise convolution block consists of a depthwise conv, batch normalization, activation, pointwise convolution, batch normalization and activation 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Inverted Res Block Adds an Inverted ResNet block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
SEBlock Adds a Squeeze Excite Block 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here

ConvNets

Module Description Input Shape Output Shape Usage
Generalized Dense Nets A generalization of Densely Connected Convolutional Networks (Dense Nets) 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Densely Connected Convolutional Network 121 A modified implementation of Densely Connected Convolutional Network 121 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Densely Connected Convolutional Network 169 A modified implementation of Densely Connected Convolutional Network 169 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Densely Connected Convolutional Network 201 A modified implementation of Densely Connected Convolutional Network 201 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Generalized VGG A generalization of VGG network 4D tensor with shape (batch_shape, rows, cols, channels) 4D or 2D tensor usage 1 usage 2
VGG 16 A modified implementation of VGG16 network 4D tensor with shape (batch_shape, rows, cols, channels) 2D tensor with shape (batch_shape, new_dim) usage 1 usage 2
VGG 19 A modified implementation of VGG19 network 4D tensor with shape (batch_shape, rows, cols, channels) 2D tensor with shape (batch_shape, new_dim) usage 1 usage 2
Inception V3 Customized Implementation of Inception Net 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Generalized Xception Generalized Implementation of XceptionNet (Depthwise Separable Convolutions) 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Xception Net A Customised Implementation of XceptionNet 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net Generalized Implementation of Effiecient Net 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B0 Customized Implementation of Efficient Net B0 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B1 Customized Implementation of Efficient Net B1 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B2 Customized Implementation of Efficient Net B2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B3 Customized Implementation of Efficient Net B3 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B4 Customized Implementation of Efficient Net B4 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B5 Customized Implementation of Efficient Net B5 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B6 Customized Implementation of Efficient Net B6 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Efficient Net B7 Customized Implementation of Efficient Net B7 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net Customized Implementation of Res Net 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net 50 Customized Implementation of Res Net 50 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net 101 Customized Implementation of Res Net 101 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net 152 Customized Implementation of Res Net 152 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net V2 Customized Implementation of Res Net V2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net 50 V2 Customized Implementation of Res Net 50 V2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net 101 V2 Customized Implementation of Res Net 101 V2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res Net 152 V2 Customized Implementation of Res Net 152 V2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res NeXt Customized Implementation of Res NeXt 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res NeXt 50 Customized Implementation of Res NeXt 50 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res NeXt 101 Customized Implementation of Res NeXt 101 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Res NeXt 152 Customized Implementation of Res NeXt 152 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
Inception Res Net V2 Customized Implementation of Inception Res Net V2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
NAS Net Generalised Implementation of NAS Net 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
NAS Net Mobile Customized Implementation of NAS Net Mobile 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
NAS Net Large Customized Implementation of NAS Net Large 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) check here
MobileNet Customized Implementation of MobileNet 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) usage 1 usage 2
Mobile Net V2 Customized Implementation of Mobile Net V2 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) usage 1 usage 2
Mobile Net V3 Customized Implementation of Mobile Net V3 4D tensor with shape (batch_shape, rows, cols, channels) 4D tensor with shape (batch_shape, new_rows, new_cols, new_channels) usage 1 usage 2

DenseNets

Module Description Input Shape Output Shape Usage
Densely Connected Network Network of Densely Connected Layers followed by Batch Normalization (optional) and Dropout (optional) 2D tensor with shape (batch_size, input_dim) 2D tensor with shape (batch_size, new_dim) check here
Densely Connected Resnet Network of skip connections for densely connected layer 2D tensor with shape (batch_size, input_dim) 2D tensor with shape (batch_size, new_dim) check here
You might also like...
State-of-the-art data augmentation search algorithms in PyTorch
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

A state of the art of new lightweight YOLO model implemented by TensorFlow 2.
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

We evaluate our method on different datasets (including ShapeNet, CUB-200-2011, and Pascal3D+) and achieve state-of-the-art results, outperforming all the other supervised and unsupervised methods and 3D representations, all in terms of performance, accuracy, and training time. FastReID is a research platform that implements state-of-the-art re-identification algorithms.
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

Comments
Releases(v1.0.1)
Owner
Ritvik Rastogi
I have been writing code since 2016, and taught myself a handful of skills and programming languages. I love solving problems by writing code
Ritvik Rastogi
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introdu

OATML 360 Dec 28, 2022
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge" Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahu

Abhin Shah 1 Jun 03, 2022
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

Couler What is Couler? Couler aims to provide a unified interface for constructing and managing workflows on different workflow engines, such as Argo

Couler Project 781 Jan 03, 2023
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
Implementation of the state-of-the-art vision transformers with tensorflow

ViT Tensorflow This repository contains the tensorflow implementation of the state-of-the-art vision transformers (a category of computer vision model

Mohammadmahdi NouriBorji 2 Mar 16, 2022
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
Piotr - IoT firmware emulation instrumentation for training and research

Piotr: Pythonic IoT exploitation and Research Introduction to Piotr Piotr is an emulation helper for Qemu that provides a convenient way to create, sh

Damien Cauquil 51 Nov 09, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
PyTorch trainer and model for Sequence Classification

PyTorch-trainer-and-model-for-Sequence-Classification After cloning the repository, modify your training data so that the training data is a .csv file

NhanTieu 2 Dec 09, 2022
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022