Pseudo-Visual Speech Denoising

Overview

Pseudo-Visual Speech Denoising

This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021.
Authors: Sindhu Hegde*, K R Prajwal*, Rudrabha Mukhopadhyay*, Vinay Namboodiri, C.V. Jawahar

PWC PWC

๐Ÿ“ Paper ๐Ÿ“‘ Project Page ๐Ÿ›  Demo Video ๐Ÿ—ƒ Real-World Test Set
Paper Website Video Real-World Test Set (coming soon)


Features

  • Denoise any real-world audio/video and obtain the clean speech.
  • Works in unconstrained settings for any speaker in any language.
  • Inputs only audio but uses the benefits of lip movements by generating a synthetic visual stream.
  • Complete training code and inference codes available.

Prerequisites

  • Python 3.7.4 (Code has been tested with this version)
  • ffmpeg: sudo apt-get install ffmpeg
  • Install necessary packages using pip install -r requirements.txt
  • Face detection pre-trained model should be downloaded to face_detection/detection/sfd/s3fd.pth

Getting the weights

Model Description Link to the model
Denoising model Weights of the denoising model (needed for inference) Link
Lipsync student Weights of the student lipsync model to generate the visual stream for noisy audio inputs (needed for inference) Link
Wav2Lip teacher Weights of the teacher lipsync model (only needed if you want to train the network from scratch) Link

Denoising any audio/video using the pre-trained model (Inference)

You can denoise any noisy audio/video and obtain the clean speech of the target speaker using:

python inference.py --lipsync_student_model_path= --checkpoint_path= --input=

The result is saved (by default) in results/result.mp4. The result directory can be specified in arguments, similar to several other available options. The input file can be any audio file: *.wav, *.mp3 or even a video file, from which the code will automatically extract the audio and generate the clean speech. Note that the noise should not be human speech, as this work only tackles the denoising task, not speaker separation.

Generating only the lip-movements for any given noisy audio/video

The synthetic visual stream (lip-movements) can be generated for any noisy audio/video using:

cd lipsync
python inference.py --checkpoint_path= --audio=

The result is saved (by default) in results/result_voice.mp4. The result directory can be specified in arguments, similar to several other available options. The input file can be any audio file: *.wav, *.mp3 or even a video file, from which the code will automatically extract the audio and generate the visual stream.

Training

We illustrate the training process using the LRS3 and VGGSound dataset. Adapting for other datasets would involve small modifications to the code.

Preprocess the dataset

LRS3 train-val/pre-train dataset folder structure
data_root (we use both train-val and pre-train sets of LSR3 dataset in this work)
โ”œโ”€โ”€ list of folders
โ”‚   โ”œโ”€โ”€ five-digit numbered video IDs ending with (.mp4)
Preprocess the dataset
python preprocess.py --data_root= --preprocessed_root=

Additional options like batch_size and number of GPUs to use in parallel to use can also be set.

Preprocessed LRS3 folder structure
preprocessed_root (lrs3_preprocessed)
โ”œโ”€โ”€ list of folders
|	โ”œโ”€โ”€ Folders with five-digit numbered video IDs
|	โ”‚   โ”œโ”€โ”€ *.jpg (extracted face crops from each frame)
VGGSound folder structure

We use VGGSound dataset as noisy data which is mixed with the clean speech from LRS3 dataset. We download the audio files (*.wav files) from here.

data_root (vgg_sound)
โ”œโ”€โ”€ *.wav (audio files)

Train!

There are two major steps: (i) Train the student-lipsync model, (ii) Train the Denoising model.

Train the Student-Lipsync model

Navigate to the lipsync folder: cd lipsync

The lipsync model can be trained using:

python train_student.py --data_root_lrs3_pretrain= --data_root_lrs3_train= --noise_data_root= --wav2lip_checkpoint_path= --checkpoint_dir=

Note: The pre-trained Wav2Lip teacher model must be downloaded (wav2lip weights) before training the student model.

Train the Denoising model!

Navigate to the main directory: cd ..

The denoising model can be trained using:

python train.py --data_root_lrs3_pretrain= --data_root_lrs3_train= --noise_data_root= --lipsync_student_model_path= --checkpoint_dir=

The model can be resumed for training as well. Look at python train.py --help for more details. Also, additional less commonly-used hyper-parameters can be set at the bottom of the audio/hparams.py file.


Evaluation

To be updated soon!


Licence and Citation

The software is licensed under the MIT License. Please cite the following paper if you have used this code:

@InProceedings{Hegde_2021_WACV,
    author    = {Hegde, Sindhu B. and Prajwal, K.R. and Mukhopadhyay, Rudrabha and Namboodiri, Vinay P. and Jawahar, C.V.},
    title     = {Visual Speech Enhancement Without a Real Visual Stream},
    booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
    month     = {January},
    year      = {2021},
    pages     = {1926-1935}
}

Acknowledgements

Parts of the lipsync code has been modified using our Wav2Lip repository. The audio functions and parameters are taken from this TTS repository. We thank the authors for this wonderful code. The code for Face Detection has been taken from the face_alignment repository. We thank the authors for releasing their code and models.

Owner
Sindhu
Masters' by Research (MS) @ CVIT, IIIT Hyderabad
Sindhu
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-ba

PyKale 370 Dec 27, 2022
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .โ–„โ–„ ยท โ–„ยท โ–„โ–Œ โ– โ–„ โ–„โ–„โ–„ยท โ– โ–„ โ–โ–ˆ โ–€. โ–โ–ˆโ–ชโ–ˆโ–ˆโ–Œโ€ขโ–ˆโ–Œโ–โ–ˆโ–โ–ˆ โ–„โ–ˆโ–ช โ€ขโ–ˆโ–Œโ–โ–ˆ โ–„โ–€โ–€โ–€โ–ˆโ–„โ–โ–ˆโ–Œโ–โ–ˆโ–ชโ–โ–ˆโ–โ–โ–Œ โ–ˆโ–ˆโ–€

SynPon 53 Dec 12, 2022
Unsupervised Attributed Multiplex Network Embedding (AAAI 2020)

Unsupervised Attributed Multiplex Network Embedding (DMGI) Overview Nodes in a multiplex network are connected by multiple types of relations. However

Chanyoung Park 114 Dec 06, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe

Mahmoud Afifi 76 Jan 07, 2023
Event-forecasting - Event Forecasting Algorithms With Python

event-forecasting Event Forecasting Algorithms Theory Correlating events in comp

Intellia ICT 4 Feb 15, 2022
RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into tables through jointly extracting intervention, outcome and outcome measure entities and their relations.

Randomised controlled trial abstract result tabulator RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into

2 Sep 16, 2022
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra

Greg Dongyoon Han 262 Jan 03, 2023