RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into tables through jointly extracting intervention, outcome and outcome measure entities and their relations.

Related tags

Deep LearningRCT-ART
Overview

Randomised controlled trial abstract result tabulator

RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into tables through jointly extracting intervention, outcome and outcome measure entities and their relations. The system is currently constrained to result sentences with specific measures of an outcome for a specific intervention and does not extract comparative relationship (e.g. a relative decrease between the study intervention and placebo).

This repository contains custom pipes and models developed, trained and run using the spaCy library. These are defined and initiated through configs and custom scripts.

In addition, we include all stages of our datasets from their raw format, gold-standard annotations, pre-processed spacy docs and output tables of the system, as well as the evaluation results of the system for its different NLP tasks across each pre-trained model.

Running the system from Python

After cloning this repository and pip installing its dependencies from requirements.txt, the system can be run in two steps:

1. Download and extract the trained models

In the primary study of RCT-ART, we explored a number of BERT-based models in the development of the system. Here, we make available the BioBERT-based named entity recognition (NER) and relation extraction (RE) models:

Download models from here.

The train_models folder of the compression file should be extracted into the root of the cloned directory for the system scripts to be able to access the models.

2a. Demo the system NLP tasks

Once the model folder has been extracted, a streamlit demo of the system NER, RE and tabulation tasks can be run locally on your browser with the following command:

streamlit run scripts/demo.py

2b. Process multiple RCT result sentences

Alternatively, multiple result sentences can be processed by the system using tabulate.py in the scripts directory. Input sentences should be in the Doc format, with the sentences from the study available within datasets/preprocessed.

Training new models for the system

The NER and RE models employed by RCT-ART were both trained using spaCy config files, where we defined their architectures and training hyper-parameters. These are included in the config directory, with a config for each model type and the different BERT-based language representation models we explored in the development of the system. The simplest way to initiate spaCy model training is with the library's inbuilt commands (https://spacy.io/usage/training), passing in the paths of the config file, training set and development set. Below are the commands we used to train the models made available with this repository:

spaCy cmd for training BioBERT-based NER model on all-domains dataset

python -m spacy train configs/ner_biobert.cfg --output ../trained_models/biobert/ner/all_domains --paths.train ../datasets/preprocessed/all_domains/results_only/train.spacy --paths.dev ../datasets/preprocessed/all_domains/results_only/dev.spacy -c ../scripts/custom_functions.py --gpu-id 0

spaCy cmd for training BioBERT-based RE model on all-domains dataset

python -m spacy train configs/rel_biobert.cfg --output ../trained_models/biobert/rel/all_domains  --paths.train ../datasets/preprocessed/all_domains/results_only/train.spacy --paths.dev ../datasets/preprocessed/all_domains/results_only/dev.spacy -c ../scripts/custom_functions.py --gpu-id 0

Repository contents breakdown

The following is a brief description of the assets available in this repository.

configs

Includes the spaCy config files for training NER and RE models of the RCT-ART system. These files define the model architectures, including the BERT-base language representations. Three of BERT language representations were experimented with for each model in the main study of this sytem: BioBERT, SciBERT and RoBERTa.

datasets

Includes all stages of the data used to train and test the RCT-ART models from raw to split gold-standard files in spaCy doc format.

Before filtering and result sentence extraction, abstracts were sourced from the EBM-NLP corpus and the annotated corpus from the Trenta et al. study, which explored automated information extraction from RCTs, and was a key reference for our study.

evaluation_results

Output txt files from the evaluate.py script, giving precision, recall and F1 scores for each of the system tasks across the various dataset cuts.

output_tables

Output csv files from the tabulate.py script, includes the predicted tables output by our system for each test result sentence.

scripts

Below is a contents list of the repository scripts with brief descriptions. Full descriptions can be found at the head of each script.

custom_functions.py -- helper functions for supporting key modules of system.

data_collection.py -- classes and functions for filtering the EBM-NLP corpus and result sentence preprocessing.

demo.py -- a browser-based demo of the RCT-ART system developed with spaCy and Streamlit (see above).

entity_ruler.py -- a script for rules-based entity recognition. Unused in final system, but made available for further development.

evaluate.py -- a set of function for evaluating the system across the NLP tasks: NER, RE, joint NER + RE and tabulation.

preprocessing.py -- a set of function for further data preprocessing after data collection and splitting data into train, test and dev sets.

rel_model.py -- defines the relation extraction model.

rel_pipe.py -- integrates the relation extraction model as a spaCy pipeline component.

tabulate.py -- run the full system by loading the NER and RE models and running their outputs through a tabulation function. Can be used on batches of RCT sentences to output batches of CSV files.

train_multiple_models.py -- iterates through spaCy train commands with different input parameters allowing batches of models to be trained.

Common issues

The transformer models of this system need a GPU with suitable video RAM -- in the primary study, they were trained and run on a GeForce RTX 3080 10GB.

There can be issues with the transformer library dependencies -- CUDA and pytorch. If an issue occurs, ensure CUDA 11.1 is installed on your system, and try reinstalling PyTorch with the following command:

pip3 install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio===0.9.1 -f https://download.pytorch.org/whl/torch_stable.html

References

  1. The relation extraction component was adapted from the following spaCy project tutorial.

  2. The EBM-NLP corpus is accessible from here and its publication can be found here.

  3. The glaucoma corpus can be found in the Trenta et al. study.

Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
A Flow-based Generative Network for Speech Synthesis

WaveGlow: a Flow-based Generative Network for Speech Synthesis Ryan Prenger, Rafael Valle, and Bryan Catanzaro In our recent paper, we propose WaveGlo

NVIDIA Corporation 2k Dec 26, 2022
Unofficial implementation of Fast-SCNN: Fast Semantic Segmentation Network

Fast-SCNN: Fast Semantic Segmentation Network Unofficial implementation of the model architecture of Fast-SCNN. Real-time Semantic Segmentation and mo

Philip Popien 69 Aug 11, 2022
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
Attack on Confidence Estimation algorithm from the paper "Disrupting Deep Uncertainty Estimation Without Harming Accuracy"

Attack on Confidence Estimation (ACE) This repository is the official implementation of "Disrupting Deep Uncertainty Estimation Without Harming Accura

3 Mar 30, 2022
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
Convolutional Neural Networks

Darknet Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. D

Joseph Redmon 23.7k Jan 05, 2023
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

DeLightCMU 212 Jan 08, 2023
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
Answering Open-Domain Questions of Varying Reasoning Steps from Text

This repository contains the authors' implementation of the Iterative Retriever, Reader, and Reranker (IRRR) model in the EMNLP 2021 paper "Answering Open-Domain Questions of Varying Reasoning Steps

26 Dec 22, 2022
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022