We evaluate our method on different datasets (including ShapeNet, CUB-200-2011, and Pascal3D+) and achieve state-of-the-art results, outperforming all the other supervised and unsupervised methods and 3D representations, all in terms of performance, accuracy, and training time.

Overview

An Effective Loss Function for Generating 3D Models from Single 2D Image without Rendering

Papers with code | Paper

Nikola Zubić   Pietro Lio  

University of Novi Sad   University of Cambridge

AIAI 2021

Citation

Besides AIAI 2021, our paper is in a Springer's book entitled "Artificial Intelligence Applications and Innovations": link

Please, cite our paper if you find this code useful for your research.

@article{zubic2021effective,
  title={An Effective Loss Function for Generating 3D Models from Single 2D Image without Rendering},
  author={Zubi{\'c}, Nikola and Li{\`o}, Pietro},
  journal={arXiv preprint arXiv:2103.03390},
  year={2021}
}

Prerequisites

  • Download code:
    Git clone the code with the following command:

    git clone https://github.com/NikolaZubic/2dimageto3dmodel.git
    
  • Open the project with Conda Environment (Python 3.7)

  • Install packages:

    conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch
    

    Then git clone Kaolin library in the root (2dimageto3dmodel) folder with the following commit and run the following commands:

    cd kaolin
    python setup.py install
    pip install --no-dependencies nuscenes-devkit opencv-python-headless scikit-learn joblib pyquaternion cachetools
    pip install packaging
    

Run the program

Run the following commands from the root/code/ (2dimageto3dmodel/code/) directory:

python main.py --dataset cub --batch_size 16 --weights pretrained_weights_cub --save_results

for the CUB Birds Dataset.

python main.py --dataset p3d --batch_size 16 --weights pretrained_weights_p3d --save_results

for the Pascal 3D+ Dataset.

The results will be saved at 2dimageto3dmodel/code/results/ path.

Continue training

To continue the training process:
Run the following commands (without --save_results) from the root/code/ (2dimageto3dmodel/code/) directory:

python main.py --dataset cub --batch_size 16 --weights pretrained_weights_cub

for the CUB Birds Dataset.

python main.py --dataset p3d --batch_size 16 --weights pretrained_weights_p3d

for the Pascal 3D+ Dataset.

License

MIT

Acknowledgment

This idea has been built based on the architecture of Insafutdinov & Dosovitskiy.
Poisson Surface Reconstruction was used for Point Cloud to 3D Mesh transformation.
The GAN architecture (used for texture mapping) is a mixture of Xian's TextureGAN and Li's GAN.

Comments
  • Where is cmr_data?

    Where is cmr_data?

    Keep running into this issue from cmr_data.p3d import P3dDataset and from cmr_data.p3d import CUBDataset

    but you do not have these files in your repo. I tried using cub_200_2011_dataset.py but it does not take in the same number of arguments as the CUBDataset class used in run_reconstruction.py.

    opened by achhabria7 6
  • ModuleNotFoundError: No module named 'kaolin.graphics'

    ModuleNotFoundError: No module named 'kaolin.graphics'

    Pascal 3D+ dataset with 4722 images is successfully loaded.

    Traceback (most recent call last): File "main.py", line 149, in <module> from rendering.renderer import Renderer File "/home/ujjawal/my_work/object_recon/2d3d/code/rendering/renderer.py", line 1, in <module> from kaolin.graphics.dib_renderer.rasterizer import linear_rasterizer ModuleNotFoundError: No module named kaolin.graphics

    I also downloaded the graphics folder from here https://github.com/NVIDIAGameWorks/kaolin/tree/e7e513173bd4159ae45be6b3e156a3ad156a3eb9 and tried to place in the graphics folder in the kaolin folder locally and here is the error Traceback (most recent call last): File "main.py", line 149, in <module> from rendering.renderer import Renderer File "/home/ujjawal/my_work/object_recon/2d3d/code/rendering/renderer.py", line 1, in <module> from kaolin.graphics.dib_renderer.rasterizer import linear_rasterizer File "/usr/local/lib/python3.6/dist-packages/kaolin-0.9.0-py3.6-linux-x86_64.egg/kaolin/graphics/__init__.py", line 2, in <module> File "/usr/local/lib/python3.6/dist-packages/kaolin-0.9.0-py3.6-linux-x86_64.egg/kaolin/graphics/nmr/__init__.py", line 1, in <module> File "/usr/local/lib/python3.6/dist-packages/kaolin-0.9.0-py3.6-linux-x86_64.egg/kaolin/graphics/nmr/rasterizer.py", line 30, in <module> ImportError: cannot import name rasterize_cuda

    opened by ujjawalcse 6
  • No module named 'models.reconstruction'

    No module named 'models.reconstruction'

    Dear NikolaZubic :
    Thanks for you updated the code recently. Did you put the reconstruction.py in the models folder?When I run “python run_reconstruction.py --name pretrained_reconstruction_cub --dataset cub --batch_size 10 --generate_pseudogt” it display
    No module named 'models.reconstruction.

    opened by lw0210 2
  • inference with single RGB pictures

    inference with single RGB pictures

    Hi, I am interested with your work, it is wonderful, and I want to use my own picture to test the model, could you provided the pretrained model and inference scripts.

    opened by 523997931 2
  • can't find the pseudogt_512*512\.npz file

    can't find the pseudogt_512*512\.npz file

    Dear NikolaZubic: I want to quote your paper, but I can't find the pseudogt_512512.npz file and can't reproduce it. Can you give me the pseudogt_512512.npz file and help me reproduce it? Thanks

    opened by Yangfuha 1
  • ValueError: Training a model requires the pseudo-ground-truth to be setup beforehand.

    ValueError: Training a model requires the pseudo-ground-truth to be setup beforehand.

    I recently read your paper and was very interested in it . I want to reproduce the code of this paper. When I followed your instructions, I found it difficult for me to run the commands(python main.py --dataset cub --batch_size 16 --weights pretrained_weights_cub and python main.py --dataset p3d --batch_size 16 --weights pretrained_weights_p3d.).And the program displayed a value error that training a model requires the pseudo-ground-truth to be setup beforehand. And I don’t know how to solve the problem, so I turn to you for help.I'm sorry to bother you, but I'really eager to solve the problem. I hope to get your reply.Thank you!

    opened by lw0210 1
  • Added step: switch to the correct correct Kaolin branch

    Added step: switch to the correct correct Kaolin branch

    This step will help others to avoid the "ModuleNotFoundError: No module named kaolin.graphics" error.

    Fix to issue: https://github.com/NikolaZubic/2dimageto3dmodel/issues/2

    opened by ricklentz 1
  • Shapenet V2 not training

    Shapenet V2 not training

    Great work guys. I was able to run the code on CUB dataset. But when I tried to run training_test_shape_net.py on Shape Net v2 chair class I'm getting errors because of missing files, unmatched file names, etc.

    So it would be helpful if you provide Shapenet Dataset Folder structure and files(images, masks) description or a sample folder and clear instructions for training the model shapenet dataset. And also if possible give pre-trained weights for the Shape net dataset models

    Thank you

    opened by girishdhegde 0
  • Pretrained model

    Pretrained model

    Hi, I find it hard to understand how to train the model on ShapeNet. It would be very helpful if you can provide a pretrained model on ShapeNet planes (I need it to test the performance in my project). If the pretrained models are not available, it would also be helpful to introduce me of how to train the model on ShapeNet.

    opened by YYYYYHC 0
  • How can I train on the boat set of the Pascal 3D+ dataset

    How can I train on the boat set of the Pascal 3D+ dataset

    I find the data of trainning such as "python run_reconstruction.py --name pretrained_reconstruction_p3d --dataset p3d --optimize_z0 --batch_size 50 --tensorboard" using the data of car.mat in sfm and data folder.Even if I rename the .mat to boat.mat and using the boat imageNet in Pascal 3D+ dataset,I find the shape of the result is more like a car not a boat.So I am wondering how to train the boat set.

    opened by lisentao 0
  • Custom Dataset

    Custom Dataset

    Hi!

    Love the work you guys have done. I am currently conducting a research. Could you please tell me how I would train on a custom dataset and how I would infer an image or create a 3d model out an image with pretrained weights that you have provided?

    opened by mahnoor-fatima-saad 0
  • How do I make my own dataset?

    How do I make my own dataset?

    Dear NikolaZubic: I want to use my own data set to replace the cub or P3D data set for training. Do you have any attention or requirements for images when making data sets?

    opened by lw0210 0
Releases(metadata)
Owner
Nikola Zubić
Interested in Artificial intelligence, Visual Computing and Cognitive science. For future AI projects: @reinai
Nikola Zubić
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
YOLOv5 + ROS2 object detection package

YOLOv5-ROS YOLOv5 + ROS2 object detection package This program changes the input of detect.py (ultralytics/yolov5) to sensor_msgs/Image of ROS2. Requi

Ar-Ray 23 Dec 19, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
Scalable, event-driven, deep-learning-friendly backtesting library

...Minimizing the mean square error on future experience. - Richard S. Sutton BTGym Scalable event-driven RL-friendly backtesting library. Build on

Andrew 922 Dec 27, 2022
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
Rohit Ingole 2 Mar 24, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

1.4k Jan 06, 2023
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022