PyTorch implementation of TSception V2 using DEAP dataset

Overview

TSception

This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper:

Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai Guan, "TSception: Capturing Temporal Dynamics and Spatial Asymmetry from EEG for Emotion Recognition", under review of IEEE Transactions on Affective Computing, preprint available at arXiv

It is an end-to-end multi-scale convolutional neural network to do classification from raw EEG signals. Previous version of TSception(IJCNN'20) can be found at website

Prepare the python virtual environment

Please create an anaconda virtual environment by:

$ conda create --name TSception

Activate the virtual environment by:

$ conda activate TSception

Install the requirements by:

$ pip3 install -r requirements.txt

Run the code

Please download the DEAP dataset at website. Please place the "data_preprocessed_python" folder at the same location of the script (./code/). To run the code for arousal dimension, please type the following command in terminal:

$ python3 main-DEAP.py --data-path './data_preprocessed_python/' --label-type 'A'

To run the experiments for valance please set the --label-type 'V'. The results will be saved into "result.txt" located at the same place as the script.

Reproduce the results

We highly suggest to run the code on a Ubuntu 18.04 or above machine using anaconda with the provided requirements to reproduce the results. You can also download the saved model at website to reproduce the results in the paper. After extracting the downloaded "save.zip", please place it at the same location of the scripts, run the code by:

$ python3 main-DEAP.py --data-path './data_preprocessed_python/' --label-type 'A' --reproduce True

Acknowledgment

The author would like to thank Su Zhang, Quihao Zeng and Tushar Chouhan for checking the code

Cite

Please cite our paper if you use our code in your own work:

@misc{ding2021tsception,
      title={TSception: Capturing Temporal Dynamics and Spatial Asymmetry from EEG for Emotion Recognition}, 
      author={Yi Ding and Neethu Robinson and Su Zhang and Qiuhao Zeng and Cuntai Guan},
      year={2021},
      eprint={2104.02935},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

OR

@INPROCEEDINGS{9206750,
  author={Y. {Ding} and N. {Robinson} and Q. {Zeng} and D. {Chen} and A. A. {Phyo Wai} and T. -S. {Lee} and C. {Guan}},
  booktitle={2020 International Joint Conference on Neural Networks (IJCNN)}, 
  title={TSception:A Deep Learning Framework for Emotion Detection Using EEG}, 
  year={2020},
  volume={},
  number={},
  pages={1-7},
  doi={10.1109/IJCNN48605.2020.9206750}}
Owner
Yi Ding
Ph.D. candidate in Computer Science and Engineering. Research interests: deep/machine learning, brain-computer interface, artificial intelligence
Yi Ding
The Video-based Accident Detection System built in Python

Accident-detection-system About the Project This Repository contains the Video-based Accident Detection System built in Python. Contributors Yukta Gop

SURYAVANSHI SNEHAL BALKRISHNA 50 Dec 07, 2022
Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

LOREN Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification". DEMO System Check out o

Jiangjie Chen 37 Dec 27, 2022
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.

Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets

Wenxuan Zhou 27 Oct 28, 2022
MohammadReza Sharifi 27 Dec 13, 2022
Code for the published paper : Learning to recognize rare traffic sign

Improving traffic sign recognition by active search This repo contains code for the paper : "Learning to recognise rare traffic signs" How to use this

samsja 4 Jan 05, 2023
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023