[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

Overview

On Sampling Collaborative Filtering Datasets

This repository contains the implementation of many popular sampling strategies, along with various explicit/implicit/sequential feedback recommendation algorithms. The code accompanies the paper "On Sampling Collaborative Filtering Datasets" [ACM] [Public PDF] where we compare the utility of different sampling strategies for preserving the performance of various recommendation algorithms.

We also provide code for Data-Genie which can automatically predict the performance of how good any sampling strategy will be for a given collaborative filtering dataset. We refer the reader to the full paper for more details. Kindly send me an email if you're interested in obtaining access to the pre-trained weights of Data-Genie.

If you find any module of this repository helpful for your own research, please consider citing the below WSDM'22 paper. Thanks!

@inproceedings{sampling_cf,
  author = {Noveen Sachdeva and Carole-Jean Wu and Julian McAuley},
  title = {On Sampling Collaborative Filtering Datasets},
  url = {https://doi.org/10.1145/3488560.3498439},
  booktitle = {Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining},
  series = {WSDM '22},
  year = {2022}
}

Code Author: Noveen Sachdeva ([email protected])


Setup

Environment Setup
$ pip install -r requirements.txt
Data Setup

Once you've correctly setup the python environments and downloaded the dataset of your choice (Amazon: http://jmcauley.ucsd.edu/data/amazon/), the following steps need to be run:

The following command will create the required data/experiment directories as well as download & preprocess the Amazon magazine and the MovieLens-100K datasets. Feel free to download more datasets from the following web-page http://jmcauley.ucsd.edu/data/amazon/ and adjust the setup.sh and preprocess.py files accordingly.

$ ./setup.sh

How to train a model on a sampled/complete CF-dataset?

  • Edit the hyper_params.py file which lists all config parameters, including what type of model to run. Currently supported models:
Sampling Strategy What is sampled? Paper Link
Random Interactions
Stratified Interactions
Temporal Interactions
SVP-CF w/ MF Interactions LINK & LINK
SVP-CF w/ Bias-only Interactions LINK & LINK
SVP-CF-Prop w/ MF Interactions LINK & LINK
SVP-CF-Prop w/ Bias-only Interactions LINK & LINK
Random Users
Head Users
SVP-CF w/ MF Users LINK & LINK
SVP-CF w/ Bias-only Users LINK & LINK
SVP-CF-Prop w/ MF Users LINK & LINK
SVP-CF-Prop w/ Bias-only Users LINK & LINK
Centrality Graph LINK
Random-Walk Graph LINK
Forest-Fire Graph LINK
  • Finally, type the following command to run:
$ CUDA_VISIBLE_DEVICES=<SOME_GPU_ID> python main.py
  • Alternatively, to train various possible recommendation algorithm on various CF datasets/subsets, please edit the configuration in grid_search.py and then run:
$ python grid_search.py

How to train Data-Genie?

  • Edit the data_genie/data_genie_config.py file which lists all config parameters, including what datasets/CF-scenarios/samplers etc. to train Data-Genie on

  • Finally, use the following command to train Data-Genie:

$ python data_genie.py

License


MIT

Owner
Noveen Sachdeva
CS PhD Student | Machine Learning Researcher
Noveen Sachdeva
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
🐾 Semantic segmentation of paws from cute pet images (PyTorch)

🐾 paw-segmentation 🐾 Semantic segmentation of paws from cute pet images 🐾 Semantic segmentation of paws from cute pet images (PyTorch) 🐾 Paw Segme

Zabir Al Nazi Nabil 3 Feb 01, 2022
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
Twin-deep neural network for semi-supervised learning of materials properties

Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction Citation: Semi-supervised teacher-student deep neural network for materials

MLEG 3 Dec 14, 2022
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
Final report with code for KAIST Course KSE 801.

Orthogonal collocation is a method for the numerical solution of partial differential equations

Chuanbo HUA 4 Apr 06, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Our code requires Python ≥ 3.8 Installation For example, venv + pip: $ python3 -m venv env $ source env/bin/activate (env) $ pyt

9 May 10, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022