[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

Overview

On Sampling Collaborative Filtering Datasets

This repository contains the implementation of many popular sampling strategies, along with various explicit/implicit/sequential feedback recommendation algorithms. The code accompanies the paper "On Sampling Collaborative Filtering Datasets" [ACM] [Public PDF] where we compare the utility of different sampling strategies for preserving the performance of various recommendation algorithms.

We also provide code for Data-Genie which can automatically predict the performance of how good any sampling strategy will be for a given collaborative filtering dataset. We refer the reader to the full paper for more details. Kindly send me an email if you're interested in obtaining access to the pre-trained weights of Data-Genie.

If you find any module of this repository helpful for your own research, please consider citing the below WSDM'22 paper. Thanks!

@inproceedings{sampling_cf,
  author = {Noveen Sachdeva and Carole-Jean Wu and Julian McAuley},
  title = {On Sampling Collaborative Filtering Datasets},
  url = {https://doi.org/10.1145/3488560.3498439},
  booktitle = {Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining},
  series = {WSDM '22},
  year = {2022}
}

Code Author: Noveen Sachdeva ([email protected])


Setup

Environment Setup
$ pip install -r requirements.txt
Data Setup

Once you've correctly setup the python environments and downloaded the dataset of your choice (Amazon: http://jmcauley.ucsd.edu/data/amazon/), the following steps need to be run:

The following command will create the required data/experiment directories as well as download & preprocess the Amazon magazine and the MovieLens-100K datasets. Feel free to download more datasets from the following web-page http://jmcauley.ucsd.edu/data/amazon/ and adjust the setup.sh and preprocess.py files accordingly.

$ ./setup.sh

How to train a model on a sampled/complete CF-dataset?

  • Edit the hyper_params.py file which lists all config parameters, including what type of model to run. Currently supported models:
Sampling Strategy What is sampled? Paper Link
Random Interactions
Stratified Interactions
Temporal Interactions
SVP-CF w/ MF Interactions LINK & LINK
SVP-CF w/ Bias-only Interactions LINK & LINK
SVP-CF-Prop w/ MF Interactions LINK & LINK
SVP-CF-Prop w/ Bias-only Interactions LINK & LINK
Random Users
Head Users
SVP-CF w/ MF Users LINK & LINK
SVP-CF w/ Bias-only Users LINK & LINK
SVP-CF-Prop w/ MF Users LINK & LINK
SVP-CF-Prop w/ Bias-only Users LINK & LINK
Centrality Graph LINK
Random-Walk Graph LINK
Forest-Fire Graph LINK
  • Finally, type the following command to run:
$ CUDA_VISIBLE_DEVICES=<SOME_GPU_ID> python main.py
  • Alternatively, to train various possible recommendation algorithm on various CF datasets/subsets, please edit the configuration in grid_search.py and then run:
$ python grid_search.py

How to train Data-Genie?

  • Edit the data_genie/data_genie_config.py file which lists all config parameters, including what datasets/CF-scenarios/samplers etc. to train Data-Genie on

  • Finally, use the following command to train Data-Genie:

$ python data_genie.py

License


MIT

Owner
Noveen Sachdeva
CS PhD Student | Machine Learning Researcher
Noveen Sachdeva
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
Özlem Taşkın 0 Feb 23, 2022
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
A python3 tool to take a 360 degree survey of the RF spectrum (hamlib + rotctld + RTL-SDR/HackRF)

RF Light House (rflh) A python script to use a rotor and a SDR device (RTL-SDR or HackRF One) to measure the RF level around and get a data set and be

Pavel Milanes (CO7WT) 11 Dec 13, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Tensorflow- MaskRCNN Steps git clone https://github.com/amalaj7/TFOD-MASKRCNN.gi

Amal Ajay 2 Jan 18, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023
A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna

Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0) Per poter utilizzare il cluster il primo passo è abilitare l'account istituziona

20 Dec 16, 2022
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 06, 2022
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
neural image generation

pixray Pixray is an image generation system. It combines previous ideas including: Perception Engines which uses image augmentation and iteratively op

dribnet 398 Dec 17, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
A library for graph deep learning research

Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?

DIVE Lab, Texas A&M University 1.3k Jan 01, 2023
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022