Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Related tags

Deep LearningSync2Gen
Overview

Sync2Gen

Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

results

0. Environment

Environment: python 3.6 and cuda 10.0 on Ubuntu 18.04

  • Pytorch 1.4.0
  • tensorflow 1.14.0 (for tensorboard)

1. Dataset

├──dataset_3dfront/
    ├──data
        ├── bedroom
            ├── 0_abs.npy
            ├── 0_rel.pkl
            ├── ...
        ├── living
            ├── 0_abs.npy
            ├── 0_rel.pkl
            ├── ...
        ├── train_bedroom.txt
        ├── train_living.txt
        ├── val_bedroom.txt
        └── val_living.txt

See 3D-FRONT Dataset for dataset generation.

2. VAE

2.1 Generate scenes from random noises

Download the pretrained model from https://drive.google.com/file/d/1VKNlEdUj1RBUOjBaBxE5xQvfsZodVjam/view?usp=sharing

Sync2Gen
└── log
    └── 3dfront
        ├── bedroom
        │   └── vaef_lr0001_w00001_B64
        │       ├── checkpoint_eval799.tar
        │       └── pairs
        └── living
            └── vaef_lr0001_w00001_B64
                ├── checkpoint_eval799.tar
                └── pairs
type='bedroom'; # or living
CUDA_VISIBLE_DEVICES=0 python ./test_sparse.py  --type $type  --log_dir ./log/3dfront/$type/vaef_lr0001_w00001_B64 --model_dict=model_scene_forward --max_parts=80 --num_class=20 --num_each_class=4 --batch_size=32 --variational --latent_dim 20 --abs_dim 16  --weight_kld 0.0001  --learning_rate 0.001 --use_dumped_pairs --dump_results --gen_from_noise --num_gen_from_noise 100

The predictions are dumped in ./dump/$type/vaef_lr0001_w00001_B64

2.2 Training

To train the network:

type='bedroom'; # or living
CUDA_VISIBLE_DEVICES=0 python ./train_sparse.py --data_path ./dataset_3dfront/data  --type $type  --log_dir ./log/3dfront/$type/vaef_lr0001_w00001_B64  --model_dict=model_scene_forward --max_parts=80 --num_class=20 --num_each_class=4 --batch_size=64 --variational --latent_dim 20 --abs_dim 16  --weight_kld 0.0001  --learning_rate 0.001

3. Bayesian optimization

cd optimization

3.1 Prior generation

See Prior generation.

3.2 Optimization

type=bedroom # or living;
bash opt.sh $type vaef_lr0001_w00001_B64  EXP_NAME

We use Pytorch-LBFGS for optimization.

3.3 Visualization

There is a simple visualization tool:

type=bedroom # or living
bash vis.sh $type vaef_lr0001_w00001_B64 EXP_NAME

The visualization is in ./vis. {i:04d}_2(3)d_pred.png is the initial prediction from VAE. {i:04d}_2(3)d_sync.png is the optimized layout after synchronization.

Acknowledgements

The repo is built based on:

We thank the authors for their great job.

Contact

If you have any questions, you can contact Haitao Yang (yanghtr [AT] outlook [DOT] com).

Owner
Haitao Yang
Haitao Yang
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Tensorflow- MaskRCNN Steps git clone https://github.com/amalaj7/TFOD-MASKRCNN.gi

Amal Ajay 2 Jan 18, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC 中科大大数据实验室 10 Oct 16, 2022
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data 💨 Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022