PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

Overview

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

This repository contains the implementation of MSBG hearing loss model and MBSTOI intellibility metric in PyTorch. The models are differentiable and can be used as a loss function to train a neural network. Both models follow Python implementation of MSBG and MBSTOI provided by organizers of Clarity Enhancement challenge. Please check the implementation at Clarity challenge repository for more information about the models.

Please note that the differentiable models are approximations of the original models and are intended to be used to train neural networks, not to give exactly the same outputs as the original models.

Requirements and installation

The model uses parts of the functionality of the original MSBG and MBSTOI models. First, download the Clarity challenge repository and set its location as CLARITY_ROOT. To install the necessary requirements:

pip install -r requirements.txt
pushd .
cd $CLARITY_ROOT/projects/MSBG/packages/matlab_mldivide
python setup.py install
popd

Additionally, set paths to the Clarity repository and this repository in path.sh and run the path.sh script before using the provided modules.

. path.sh

Tests and example script

Directory tests contains scipts to test the correspondance of the differentiable modules compared to their original implementation. To run the tests, you need the Clarity data, which can be obtained from the Clarity challenge repository. Please set the paths to the data in the scripts.

MSBG test

The tests of the hearing loss compare the outputs of functions provided by the original implementation and the differentiable version. The output shows the mean differences of the output signals

Test measure_rms, mean difference 9.629646580133766e-09
Test src_to_cochlea_filt forward, mean difference 9.830486283616455e-16
Test src_to_cochlea_filt backward, mean difference 6.900756131702976e-15
Test smear, mean difference 0.00019685214410863303
Test gammatone_filterbank, mean difference 5.49958965492409e-07
Test compute_envelope, mean difference 4.379759604381869e-06
Test recruitment, mean difference 3.1055169855373764e-12
Test cochlea, mean difference 2.5698933453410134e-06
Test hearing_loss, mean difference 2.2326804706160673e-06

MBSTOI test

The test of the intelligbility metric compares the MBSTOI values obtained by the original and differentiable model over the development set of Clarity challenge. The following graph shows the comparison. Correspondance of MBSTOI metrics.

Example script

The script example.py shows how to use the provided module as a loss function for training the neural network. In the script, we use a simple small model and overfit on one example. The descreasing loss function confirms that the provided modules are differentiable.

Loss function with MSBG and MBSTOI loss

Citation

If you use this work, please cite:

@inproceedings{Zmolikova2021BUT,
  author    = {Zmolikova, Katerina and \v{C}ernock\'{y}, Jan "Honza"},
  title     = {{BUT system for the first Clarity enhancement challenge}},
  year      = {2021},
  booktitle = {The Clarity Workshop on Machine Learning Challenges for Hearing Aids (Clarity-2021)},
}
Owner
BUT <a href=[email protected]">
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023