Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Overview

Pop-Out Motion

Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Kyun (T-K) Kim (*: equal contributions)

[Project Page] [Paper] [Video]

animated

We present a framework that can deform an object in a 2D image as it exists in 3D space. While our method leverages 2D-to-3D reconstruction, we argue that reconstruction is not sufficient for realistic deformations due to the vulnerability to topological errors. Thus, we propose to take a supervised learning-based approach to predict the shape Laplacian of the underlying volume of a 3D reconstruction represented as a point cloud. Given the deformation energy calculated using the predicted shape Laplacian and user-defined deformation handles (e.g., keypoints), we obtain bounded biharmonic weights to model plausible handle-based image deformation.

 

Environment Setup

Clone this repository and install the dependencies specified in requirements.txt.

 git clone https://github.com/jyunlee/Pop-Out-Motion.git
 mv Pop-Out-Motion
 pip install -r requirements.txt 

 

Data Pre-Processing

Training Data

  1. Build executables from the c++ files in data_preprocessing directory. After running the commands below, you should have normalize_bin and calc_l_minv_bin executables.
 cd data_preprocessing
 mkdir build
 cd build
 cmake ..
 make
 cd ..
  1. Clone and build Manifold repository to obtain manifold executable.

  2. Clone and build fTetWild repository to obtain FloatTetwild_bin executable.

  3. Run preprocess_train_data.py to prepare your training data. This should perform (1) shape normalization into a unit bounding sphere, (2) volume mesh conversion, and (3) cotangent Laplacian and inverse mass calculation.

 python preprocess_train_data.py 

Test Data

  1. Build executables from the c++ files in data_preprocessing directory. After running the commands below, you should have normalize_bin executable.
 cd data_preprocessing
 mkdir build
 cd build
 cmake ..
 make
 cd ..
  1. Run preprocess_test_data.py to prepare your test data. This should perform (1) shape normalization into a unit bounding sphere and (2) pre-computation of KNN-Based Point Pair Sampling (KPS).
 python preprocess_test_data.py 

 

Network Training

Run network/train.py to train your own Laplacian Learning Network.

 cd network
 python train.py 

The pre-trained model on DFAUST dataset is also available here.

 

Network Inference

Deformation Energy Inference

  1. Given an input image, generate its 3D reconstruction via running PIFu. It is also possible to directly use point cloud data obtained from other sources.

  2. Pre-process the data obtained from Step 1 -- please refer to this section.

  3. Run network/a_inference.py to predict the deformation energy matrix.

 cd network
 python a_inference.py 

Handle-Based Deformation Weight Calculation

  1. Build an executable from the c++ file in bbw_calculation directory. After running the commands below, you should have calc_bbw_bin executable.
 cd bbw_calculation
 mkdir build
 cd build
 cmake ..
 make
 cd ..
  1. (Optional) Run sample_pt_handles.py to obtain deformation control handles sampled by farthest point sampling.

  2. Run calc_bbw_bin to calculate handle-based deformation weights using the predicted deformation energy.

./build/calc_bbw_bin <shape_path> <handle_path> <deformation_energy_path> <output_weight_path>

 

Citation

If you find this work useful, please consider citing our paper.

@InProceedings{lee2022popoutmotion,
    author = {Lee, Jihyun and Sung, Minhyuk and Kim, Hyunjin and Kim, Tae-Kyun},
    title = {Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2022}
}

 

Acknowledgements

Owner
Jihyun Lee
Jihyun Lee
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
VIsually-Pivoted Audio and(N) Text

VIP-ANT: VIsually-Pivoted Audio and(N) Text Code for the paper Connecting the Dots between Audio and Text without Parallel Data through Visual Knowled

Yän.PnG 16 Nov 04, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 09, 2023
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
Code for "ATISS: Autoregressive Transformers for Indoor Scene Synthesis", NeurIPS 2021

ATISS: Autoregressive Transformers for Indoor Scene Synthesis This repository contains the code that accompanies our paper ATISS: Autoregressive Trans

138 Dec 22, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
Pytorch version of VidLanKD: Improving Language Understanding viaVideo-Distilled Knowledge Transfer

VidLanKD Implementation of VidLanKD: Improving Language Understanding via Video-Distilled Knowledge Transfer by Zineng Tang, Jaemin Cho, Hao Tan, Mohi

Zineng Tang 54 Dec 20, 2022