Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

Overview

AmbientGAN: Generative models from lossy measurements

This repository provides code to reproduce results from the paper AmbientGAN: Generative models from lossy measurements.

The training setup is as in the following diagram:

Here are a few example results:

Measured Baseline AmbientGAN (ours)

Few more samples from AmbientGAN models trained with 1-D projections:

Pad-Rotate-Project Pad-Rotate-Project-theta

The rest of the README describes how to reproduce the results.

Requirements

  • Python 2.7
  • Tensorflow >= 1.4.0
  • matplotlib
  • scipy
  • numpy
  • cvxpy
  • scikit-learn
  • tqdm
  • opencv-python
  • pandas

For pip installation, use $ pip install -r requirements.txt

Get the data

  • MNIST data is automatically downloaded
  • Get the celebA dataset here and put the jpeg files in ./data/celebA/
  • Get the CIFAR-10 python data from here and put it in ./data/cifar10/cifar-10-batches-py/*

Get inference models

We need inference models for computing the inception score.

  • For MNIST, you can train your own by

    cd ./src/mnist/inf
    python train.py
    

    [TODO]: Provide a pretrained model.

  • Inception model for use with CIFAR-10 is automatically downloaded.

Create experiment scripts

Run ./create_scripts/create_scripts.sh

This will create scripts for all the experiments in the paper.

[Optional] If you want to run only a subset of experiments you can define the grid in ./create_scripts/DATASET_NAME/grid_*.sh or if you wish to tweak a lot of parameters, you can change ./create_scripts/DATASET_NAME/base_script.sh. Then run ./create_scripts/create_scripts.sh as above to create the corresponding scripts (remember to remove any previous files from ./scripts/)

Run experiments

We provide scripts to train on multiple GPUs in parallel. For example, if you wish to use 4 GPUs, you can run: ./run_scripts/run_sequentially_parallel.sh "0 1 2 3"

This will start 4 GNU screens. Each program within the screen will attempt to acquire and run experiments from ./scripts/, one at a time. Each experiment run will save samples, checkpoints, etc. to ./results/.

See results as you train

Samples

You can see samples for each experiment in ./results/samples/EXPT_DIR/

EXPT_DIR is defined based on the hyperparameters of the experiment. See ./src/commons/dir_def.py to see how this is done.

Quantitative plots

Run

python src/aggregator_mnist.py
python src/aggregator_cifar.py

This will create pickle files in ./results/ with the relevant data in a Pandas dataframe.

Now use the ipython notebooks ./plotting_mnist.ipynb and ./plotting_cifar.ipynb to get the relevant plots. The generated plots are also saved to ./results/plots/ (make sure this directory exists)

Owner
Ashish Bora
Ashish Bora
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
Vision-Language Pre-training for Image Captioning and Question Answering

VLP This repo hosts the source code for our AAAI2020 work Vision-Language Pre-training (VLP). We have released the pre-trained model on Conceptual Cap

Luowei Zhou 373 Jan 03, 2023
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
DeepStruc is a Conditional Variational Autoencoder which can predict the mono-metallic nanoparticle from a Pair Distribution Function.

ChemRxiv | [Paper] XXX DeepStruc Welcome to DeepStruc, a Deep Generative Model (DGM) that learns the relation between PDF and atomic structure and the

Emil Thyge Skaaning Kjær 13 Aug 01, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Cobalt Strike teamserver detection.

Cobalt-Strike-det Cobalt Strike teamserver detection. usage: cobaltstrike_verify.py [-l TARGETS] [-t THREADS] optional arguments: -h, --help show this

TimWhite 17 Sep 27, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022
Proof of concept GnuCash Webinterface

Proof of Concept GnuCash Webinterface This may one day be a something truly great. Milestones [ ] Browse accounts and view transactions [ ] Record sim

Josh 14 Dec 28, 2022