Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Overview

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets

This is the official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR 2021). For more details, please refer to:


Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets

Yuan-Hong Liao, Amlan Kar, Sanja Fidler

University of Toronto

[Paper] [Video] [Project]

CVPR2021 Oral

Data is the engine of modern computer vision, which necessitates collecting large-scale datasets. This is expensive, and guaranteeing the quality of the labels is a major challenge. In this paper, we investigate efficient annotation strategies for collecting multi-class classification labels fora large collection of images. While methods that exploit learnt models for labeling exist, a surprisingly prevalent approach is to query humans for a fixed number of labels per datum and aggregate them, which is expensive. Building on prior work on online joint probabilistic modeling of human annotations and machine generated beliefs, we propose modifications and best practices aimed at minimizing human labeling effort. Specifically, we make use ofadvances in self-supervised learning, view annotation as a semi-supervised learning problem, identify and mitigate pitfalls and ablate several key design choices to propose effective guidelines for labeling. Our analysis is done in a more realistic simulation that involves querying human labelers, which uncovers issues with evaluation using existing worker simulation methods. Simulated experiments on a 125k image subset of the ImageNet dataset with 100 classes showthat it can be annotated to 80% top-1 accuracy with 0.35 annotations per image on average, a 2.7x and 6.7x improvement over prior work and manual annotation, respectively.


Code usage

  • Downdload the extracted BYOL features and change root directory accordingly
wget -P data/features/ http://www.cs.toronto.edu/~andrew/research/cvpr2021-good_practices/data/byol_r50-e3b0c442.pth_feat1.npy 

Replace REPO_DIR (here) with the absolute path to the repository.

  • Run online labeling with simulated workers
    • <EXPERIMENT> can be imagenet_split_0~5, imagenet_animal, imagenet_100_classes
    • <METHOD> can be ds_model, lean, improved_lean, efficient_annotation
    • <SIMULATION> can be amt_structured_noise, amt_uniform_noise
python main.py experiment=<EXPERIMENT> learner_method=<METHOD> simulation <SIMULATION>

To change other configurations, go check the config.yaml here.

Code Structure

There are several components in our system: Sampler, AnnotationHolder, Learner, Optimizer and Aggregator.

  • Sampler: We implement RandomSampler and GreedyTaskAssignmentSampler. For GreedyTaskAssignmentSampler, you need to specify an additional flag max_annotation_per_worker

For example,

python main.py experiment=imagenet_animal learner_method=efficient_annotation simulation=amt_structured_noise sampler.algo=greedy_task_assignment sampler.max_annotation_per_worker=2000
  • AnnotationHolder: It holds all information of each example including worker annotation, ground truth and current risk estimation. For simulated worker, you can call annotation_holder.collect_annotation to query annotations. You can also sample the annotation outside and add them by calling annotation_holder.add_annotation

  • Learner: We implement DummyLearner and LinearNNLearner. You can use your favorite architecture by overwriting NNLearner.init_learner

  • Optimizer: We implement EMOptimizer. By calling optimizer.step, the optimizer perform EM for a fixed number of times unless it's converged. If DummyLearner is not used, the optimizer is expected to call optimizer.fit_machine_learner to train the machine learner and perform prediction over all data examples.

  • Aggregator: We implement MjAggregator and BayesAggregator. MjAggregator performs majority vote to infer the final label. BayesAggregator treat the ground truth and worker skill as hidden variables and infer it based on the observation (worker annotation).

Citation

If you use this code, please cite:

@misc{liao2021good,
      title={Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets}, 
      author={Yuan-Hong Liao and Amlan Kar and Sanja Fidler},
      year={2021},
      eprint={2104.12690},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Sanja Fidler's Lab
Sanja Fidler's lab at the University of Toronto
Sanja Fidler's Lab
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
A new play-and-plug method of controlling an existing generative model with conditioning attributes and their compositions.

Viz-It Data Visualizer Web-Application If I ask you where most of the data wrangler looses their time ? It is Data Overview and EDA. Presenting "Viz-I

NVIDIA Research Projects 66 Jan 01, 2023
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin

2 Nov 07, 2022
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 07, 2022
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors

Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains

151 Dec 26, 2022
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

Realtime Unsupervised Depth Estimation from an Image This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation:

Ravi Garg 227 Nov 28, 2022
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022
Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022