Probabilistic Gradient Boosting Machines

Related tags

Deep Learningpgbm
Overview

PGBM Airlab Amsterdam

PyPi version Python version GitHub license

Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Airlab in Amsterdam. It provides the following advantages over existing frameworks:

  • Probabilistic regression estimates instead of only point estimates. (example)
  • Auto-differentiation of custom loss functions. (example, example)
  • Native (multi-)GPU-acceleration. (example, example)
  • Ability to optimize probabilistic estimates after training for a set of common distributions, without retraining the model. (example)

It is aimed at users interested in solving large-scale tabular probabilistic regression problems, such as probabilistic time series forecasting. For more details, read our paper or check out the examples.

Installation

Run pip install pgbm from a terminal within a Python (virtual) environment of your choice.

Verification

  • Download & run an example from the examples folder to verify the installation is correct:
    • Run this example to verify ability to train & predict on CPU with Torch backend.
    • Run this example to verify ability to train & predict on GPU with Torch backend.
    • Run this example to verify ability to train & predict on CPU with Numba backend.
  • Note that when training on the GPU, the custom CUDA kernel will be JIT-compiled when initializing a model. Hence, the first time you train a model on the GPU it can take a bit longer, as PGBM needs to compile the CUDA kernel.
  • When using the Numba-backend, several functions need to be JIT-compiled. Hence, the first time you train a model using this backend it can take a bit longer.
  • To run the examples some additional packages such as scikit-learn or matplotlib are required; these should be installed separately via pip or conda.

Dependencies

The core package has the following dependencies which should be installed separately (installing the core package via pip will not automatically install these dependencies).

Torch backend
  • CUDA Toolkit matching your PyTorch distribution (https://developer.nvidia.com/cuda-toolkit)
  • PyTorch >= 1.7.0, with CUDA 11.0 for GPU acceleration (https://pytorch.org/get-started/locally/). Verify that PyTorch can find a cuda device on your machine by checking whether torch.cuda.is_available() returns True after installing PyTorch.
  • PGBM uses a custom CUDA kernel which needs to be compiled, which may require installing a suitable compiler. Installing PyTorch and the full CUDA Toolkit should be sufficient, but open an issue if you find it still not working even after installing these dependencies.
Numba backend

The Numba backend does not support differentiable loss functions and GPU training is also not supported using this backend.

Support

See the examples folder for examples, an overview of hyperparameters and a function reference. In general, PGBM works similar to existing gradient boosting packages such as LightGBM or xgboost (and it should be possible to more or less use it as a drop-in replacement), except that it is required to explicitly define a loss function and loss metric.

In case further support is required, open an issue.

Reference

Olivier Sprangers, Sebastian Schelter, Maarten de Rijke. Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 21), August 14โ€“18, 2021, Virtual Event, Singapore.

The experiments from our paper can be replicated by running the scripts in the experiments folder. Datasets are downloaded when needed in the experiments except for higgs and m5, which should be pre-downloaded and saved to the datasets folder (Higgs) and to datasets/m5 (m5).

License

This project is licensed under the terms of the Apache 2.0 license.

Acknowledgements

This project was developed by Airlab Amsterdam.

Owner
Olivier Sprangers
PhD student at University of Amsterdam
Olivier Sprangers
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu ยท Jinlong Yang ยท Dimitrios Tzionas ยท Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

๐ŸŒŸ HNSW + PostgreSQL Indexer HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework. It combines the

Jina AI 25 Oct 14, 2022
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
Unimodal Face Classification with Multimodal Training

Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi

Wenbin Teng 3 Jul 06, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zรผgner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zรผgner 131 Dec 13, 2022
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021์€ โ€˜2021 ์ธ๊ณต์ง€๋Šฅ ํ•™์Šต์šฉ ๋ฐ์ดํ„ฐ ๊ตฌ์ถ•์‚ฌ์—…โ€™์„ ํ†ตํ•ด ๋งŒ๋“ค์–ด์ง„ ํ•™์Šต์šฉ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋‹น๋‡จ๋ณ‘์„ ํšจ๊ณผ์ ์œผ๋กœ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€์— ๋Œ€ํ•œ A

2 Dec 27, 2021
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Robert Roman 473 Jan 09, 2023