PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Overview

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv

This is a PyTorch implementation of our paper.

1. Requirements

torch>=1.7.0; torchvision>=0.8.0; Visdom(optional)

data prepare: Database with the following folder structure:

│NTURGBD/
├──dataset_splits/
│  ├── @CS
│  │   ├── train.txt
                video name               total frames    label
│  │   │    ├──S001C001P001R001A001_rgb      103          0 
│  │   │    ├──S001C001P001R001A004_rgb      99           3 
│  │   │    ├──...... 
│  │   ├── valid.txt
│  ├── @CV
│  │   ├── train.txt
│  │   ├── valid.txt
├──Images/
│  │   ├── S001C002P001R001A002_rgb
│  │   │   ├──000000.jpg
│  │   │   ├──000001.jpg
│  │   │   ├──......
├──nturgb+d_depth_masked/
│  │   ├── S001C002P001R001A002
│  │   │   ├──MDepth-00000000.png
│  │   │   ├──MDepth-00000001.png
│  │   │   ├──......

It is important to note that due to the RGB video resolution in the NTU dataset is relatively high, so we are not directly to resize the image from the original resolution to 320x240, but first crop the object-centered ROI area (640x480), and then resize it to 320x240 for training and testing.

2. Methodology

We propose to decouple and recouple spatiotemporal representation for RGB-D-based motion recognition. The Figure in the first line illustrates the proposed multi-modal spatiotemporal representation learning framework. The RGB-D-based motion recognition can be described as spatiotemporal information decoupling modeling, compact representation recoupling learning, and cross-modal representation interactive learning. The Figure in the second line shows the process of decoupling and recoupling saptiotemporal representation of a unimodal data.

3. Train and Evaluate

All of our models are pre-trained on the 20BN Jester V1 dataset and the pretrained model can be download here. Before cross-modal representation interactive learning, we first separately perform unimodal representation learning on RGB and depth data modalities.

Unimodal Training

Take training an RGB model with 8 GPUs on the NTU-RGBD dataset as an example, some basic configuration:

common:
  dataset: NTU 
  batch_size: 6
  test_batch_size: 6
  num_workers: 6
  learning_rate: 0.01
  learning_rate_min: 0.00001
  momentum: 0.9
  weight_decay: 0.0003
  init_epochs: 0
  epochs: 100
  optim: SGD
  scheduler:
    name: cosin                     # Represent decayed learning rate with the cosine schedule
    warm_up_epochs: 3 
  loss:
    name: CE                        # cross entropy loss function
    labelsmooth: True
  MultiLoss: True                   # Enable multi-loss training strategy.
  loss_lamdb: [ 1, 0.5, 0.5, 0.5 ]  # The loss weight coefficient assigned for each sub-branch.
  distill: 1.                       # The loss weight coefficient assigned for distillation task.

model:
  Network: I3DWTrans                # I3DWTrans represent unimodal training, set FusionNet for multi-modal fusion training.
  sample_duration: 64               # Sampled frames in a video.
  sample_size: 224                  # The image is croped into 224x224.
  grad_clip: 5.
  SYNC_BN: 1                        # Utilize SyncBatchNorm.
  w: 10                             # Sliding window size.
  temper: 0.5                       # Distillation temperature setting.
  recoupling: True                  # Enable recoupling strategy during training.
  knn_attention: 0.7                # Hyperparameter used in k-NN attention: selecting Top-70% tokens.
  sharpness: True                   # Enable sharpness for each sub-branch's output.
  temp: [ 0.04, 0.07 ]              # Temperature parameter follows a cosine schedule from 0.04 to 0.07 during the training.
  frp: True                         # Enable FRP module.
  SEHeads: 1                        # Number of heads used in RCM module.
  N: 6                              # Number of Transformer blochs configured for each sub-branch.

dataset:
  type: M                           # M: RGB modality, K: Depth modality.
  flip: 0.5                         # Horizontal flip.
  rotated: 0.5                      # Horizontal rotation
  angle: (-10, 10)                  # Rotation angle
  Blur: False                       # Enable random blur operation for each video frame.
  resize: (320, 240)                # The input is spatially resized to 320x240 for NTU dataset.
  crop_size: 224                
  low_frames: 16                    # Number of frames sampled for small Transformer.       
  media_frames: 32                  # Number of frames sampled for medium Transformer.  
  high_frames: 48                   # Number of frames sampled for large Transformer.
bash run.sh tools/train.py config/NTU.yml 0,1,2,3,4,5,6,7 8

or

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 train.py --config config/NTU.yml --nprocs 8  

Cross-modal Representation Interactive Learning

Take training a fusion model with 8 GPUs on the NTU-RGBD dataset as an example.

bash run.sh tools/fusion.py config/NTU.yml 0,1,2,3,4,5,6,7 8

or

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 fusion.py --config config/NTU.yml --nprocs 8  

Evaluation

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 train.py --config config/NTU.yml --nprocs 1 --eval_only --resume /path/to/model_best.pth.tar 

4. Models Download

Dataset Modality Accuracy Download
NvGesture RGB 89.58 Google Drive
NvGesture Depth 90.62 Google Drive
NvGesture RGB-D 91.70 Google Drive
THU-READ RGB 81.25 Google Drive
THU-READ Depth 77.92 Google Drive
THU-READ RGB-D 87.04 Google Drive
NTU-RGBD(CS) RGB 90.3 Google Drive
NTU-RGBD(CS) Depth 92.7 Google Drive
NTU-RGBD(CS) RGB-D 94.2 Google Drive
NTU-RGBD(CV) RGB 95.4 Google Drive
NTU-RGBD(CV) Depth 96.2 Google Drive
NTU-RGBD(CV) RGB-D 97.3 Google Drive
IsoGD RGB 60.87 Google Drive
IsoGD Depth 60.17 Google Drive
IsoGD RGB-D 66.79 Google Drive

Citation

@inproceedings{zhou2021DRSR,
      title={Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition}, 
      author={Benjia Zhou and Pichao Wang and Jun Wan and Yanyan Liang and Fan Wang and Du Zhang and Zhen Lei and Hao Li and Rong Jin},
      journal={arXiv preprint arXiv:2112.09129},
      year={2021},
}

LICENSE

The code is released under the MIT license.

Copyright

Copyright (C) 2010-2021 Alibaba Group Holding Limited.

Owner
DamoCV
CV team of DAMO academy
DamoCV
Unrolled Generative Adversarial Networks

Unrolled Generative Adversarial Networks Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein arxiv:1611.02163 This repo contains an example notebo

Ben Poole 292 Dec 06, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

Pliable Pixels 6 Jan 12, 2022
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
DGN pymarl - Implementation of DGN on Pymarl, which could be trained by VDN or QMIX

This is the implementation of DGN on Pymarl, which could be trained by VDN or QM

4 Nov 23, 2022