Trajectory Extraction of road users via Traffic Camera

Overview

Traffic Monitoring

Citation

The associated paper for this project will be published here as soon as possible. When using this software, please cite the following:

@software{Strosahl_TrafficMonitoring,
author = {Strosahl, Julian},
license = {Apache-2.0},
title = {{TrafficMonitoring}},
url = {https://github.com/EFS-OpenSource/TrafficMonitoring},
version = {0.9.0}
}

Trajectory Extraction from Traffic Camera

This project was developed by Julian Strosahl Elektronische Fahrwerksyteme GmbH within the scope of the research project SAVeNoW (Project Website SAVe:)

This repository includes the Code for my Master Thesis Project about Trajectory Extraction from a Traffic Camera at an existing traffic intersection in Ingolstadt

The project is separated in different parts, at first a toolkit for capturing the live RTSP videostream from the camera. see here

The main project part is in this folder which contains a python script for training, evaluating and running a neuronal network, a tracking algorithm and extraction the trajectories to a csv file.

The training results (logs and metrics) are provided here

Example videos are provided here. You need to use Git LFS for access the videos.

Installation

  1. Install Miniconda
  2. Create Conda environment from existing file
conda env create --file environment.yml --name 
   

   

This will create a conda environment with your env name which contains all necessary python dependencies and OpenCV.

detectron2 is also necessary. You have to install it with for CUDA 11.0 For other CUDA version have a look in the installation instruction of detectron2.

python -m pip install detectron2 -f \
  https://dl.fbaipublicfiles.com/detectron2/wheels/cu110/torch1.7/index.html
  1. Provide the Network Weights for the Mask R-CNN:
  • Use Git LFS to get the model_weights in the right folder and download them.
  • If you don't want to use GIT LFS, you can download the weights and store them in the model_weights folder. You can find two different versions of weights, one default model 4 cats is trained on segmentation 4 different categories (Truck, Car, Bicycle and Person) and the other model 16 cats is trained on 16 categories but with bad results in some categories.

Getting Started Video

If you don't have a video just capture one here Quick Start Capture Video from Stream

For extracting trajectories cd traffic_monitoring and run it on a specific video. If you don't have one, just use this provided demo video:

python run_on_video.py --video ./videos/2021-01-13_16-32-09.mp4

The annotated video with segmentations will be stored in videos_output and the trajectory file in trajectory_output. The both result folders will be created by the script.

The trajectory file provides following structure:

frame_id category track_id x y x_opt y_opt
11 car 1 678142.80 5405298.02 678142.28 5405298.20
11 car 3 678174.98 5405294.48 678176.03 5405295.02
... ... ... ... ... ... ...
19 car 15 678142.75 5405308.82 678142.33 5405308.84

x and y use detection and the middle point of the bounding box(Baseline, naive Approach), x_opt and y_opt are calculated by segmentation and estimation of a ground plate of each vehicle (Our Approach).

Georeferencing

The provided software is optimized for one specific research intersection. You can provide a intersection specific dataset for usage in this software by changing the points file in config.

Quality of Trajectories

14 Reference Measurements with a measurement vehicle with dGPS-Sensor over the intersection show a deviation of only 0.52 meters (Mean Absolute Error, MAE) and 0.69 meters (root-mean-square error, RMSE)

The following images show the georeferenced map of the intersection with the measurement ground truth (green), middle point of bounding box (blue) and estimation via bottom plate (concept of our work) (red)

right_intersection right_intersection left_intersection

The evaluation can be done by the script evaluation_measurement.py. The trajectory files for the measurement drives are prepared in the [data/measurement] folder. Just run

python evaluation_measurement.py 

for getting the error plots and the georeferenced images.

Own Training

The segmentation works with detectron2 and with an own training. If you want to use your own dataset to improve segmentation or detection you can retrain it with

python train.py

The dataset, which was created as part of this work, is not yet publicly available. You just need to provide training, validation and test data in data. The dataset needs the COCO-format. For labeling you can use CVAT which provides pre-labeling and interpolation

The data will be read by ReadCOCODataset. In line 323 is a mapping configuration which can be configured for remap the labeled categories in own specified categories.

If you want to have a look on my training experience explore Training Results

Quality of Tracking

If you want only evaluate the Tracking algorithm SORT vs. Deep SORT there is the script evaluation_tracking.py for evaluate only the tracking algorithm by py-motmetrics. You need the labeled dataset for this.

Acknowledgment

This work is supported by the German Federal Ministry of Transport and Digital Infrastructure (BMVI) within the Automated and Connected Driving funding program under Grant No. 01MM20012F (SAVeNoW).

License

TrafficMonitoring is distributed under the Apache License 2.0. See LICENSE for more information.

Owner
Julian Strosahl
Julian Strosahl
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022
The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Openspoor The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch

7 Aug 22, 2022
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

8 Apr 16, 2022
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
Rethinking Nearest Neighbors for Visual Classification

Rethinking Nearest Neighbors for Visual Classification arXiv Environment settings Check out scripts/env_setup.sh Setup data Download the following fin

Menglin Jia 29 Oct 11, 2022
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Double-zh 45 Dec 19, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022