Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

Overview

PL-Marker

Source code for Pack Together: Entity and Relation Extraction with Levitated Marker.

Quick links

Overview

In this work, we present a novel span representation approach, named Packed Levitated Markers, to consider the dependencies between the spans (pairs) by strategically packing the markers in the encoder. Our approach is evaluated on two typical span (pair) representation tasks:

  1. Named Entity Recognition (NER): Adopt a group packing strategy for enabling our model to process massive spans together to consider their dependencies with limited resources.

  2. Relation Extraction (RE): Adopt a subject-oriented packing strategy for packing each subject and all its objects into an instance to model the dependencies between the same-subject span pairs

Please find more details of this work in our paper.

Setup

Install Dependencies

The code is based on huggaface's transformers.

Install dependencies and apex:

pip3 install -r requirement.txt
pip3 install --editable transformers

Download and preprocess the datasets

Our experiments are based on three datasets: ACE04, ACE05, and SciERC. Please find the links and pre-processing below:

  • CoNLL03: We use the Enlish part of CoNLL03
  • OntoNotes: We use preprocess_ontonotes.py to preprocess the OntoNote 5.0.
  • Few-NERD: The dataseet can be downloaed in their website
  • ACE04/ACE05: We use the preprocessing code from DyGIE repo. Please follow the instructions to preprocess the ACE05 and ACE04 datasets.
  • SciERC: The preprocessed SciERC dataset can be downloaded in their project website.

Pre-trained Models

We release our pre-trained NER models and RE models for ACE05 and SciERC datasets on Google Drive/Tsinghua Cloud.

Note: the performance of the pre-trained models might be slightly different from the reported numbers in the paper, since we reported the average numbers based on multiple runs.

Training Script

Train NER Models:

bash scripts/run_train_ner_PLMarker.sh
bash scripts/run_train_ner_BIO.sh
bash scripts/run_train_ner_TokenCat.sh

Train RE Models:

bash run_train_re.sh

Quick Start

The following commands can be used to run our pre-trained models on SciERC.

Evaluate the NER model:

CUDA_VISIBLE_DEVICES=0  python3  run_acener.py  --model_type bertspanmarker  \
    --model_name_or_path  ../bert_models/scibert-uncased  --do_lower_case  \
    --data_dir scierc  \
    --learning_rate 2e-5  --num_train_epochs 50  --per_gpu_train_batch_size  8  --per_gpu_eval_batch_size 16  --gradient_accumulation_steps 1  \
    --max_seq_length 512  --save_steps 2000  --max_pair_length 256  --max_mention_ori_length 8    \
    --do_eval  --evaluate_during_training   --eval_all_checkpoints  \
    --fp16  --seed 42  --onedropout  --lminit  \
    --train_file train.json --dev_file dev.json --test_file test.json  \
    --output_dir sciner_models/sciner-scibert  --overwrite_output_dir  --output_results

Evaluate the RE model:

CUDA_VISIBLE_DEVICES=0  python3  run_re.py  --model_type bertsub  \
    --model_name_or_path  ../bert_models/scibert-uncased  --do_lower_case  \
    --data_dir scierc  \
    --learning_rate 2e-5  --num_train_epochs 10  --per_gpu_train_batch_size  8  --per_gpu_eval_batch_size 16  --gradient_accumulation_steps 1  \
    --max_seq_length 256  --max_pair_length 16  --save_steps 2500  \
    --do_eval  --evaluate_during_training   --eval_all_checkpoints  --eval_logsoftmax  \
    --fp16  --lminit   \
    --test_file sciner_models/sciner-scibert/ent_pred_test.json  \
    --use_ner_results \
    --output_dir scire_models/scire-scibert

Here, --use_ner_results denotes using the original entity type predicted by NER models.

TypeMarker

if we use the flag --use_typemarker for the RE models, the results will be:

Model Ent Rel Rel+
ACE05-UnTypeMarker (in paper) 89.7 68.8 66.3
ACE05-TypeMarker 89.7 67.5 65.2
SciERC-UnTypeMarker (in paper) 69.9 52.0 40.6
SciERC-TypeMarker 69.9 52.5 40.9

Since the Typemarker increase the performance of SciERC but decrease the performance of ACE05, we didn't use it in the paper.

Citation

If you use our code in your research, please cite our work:

@article{ye2021plmarker,
  author    = {Deming Ye and Yankai Lin and Maosong Sun},
  title     = {Pack Together: Entity and Relation Extraction with Levitated Marker},
  journal   = {arXiv Preprint},
  year={2021}
}
Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training fr

National Renewable Energy Laboratory 37 Dec 17, 2022
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver

Shape As Points (SAP) Paper | Project Page | Short Video (6 min) | Long Video (12 min) This repository contains the implementation of the paper: Shape

394 Dec 30, 2022
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
EdiBERT, a generative model for image editing

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
User-friendly bulk RNAseq deconvolution using simulated annealing

Welcome to cellanneal - The user-friendly application for deconvolving omics data sets. cellanneal is an application for deconvolving biological mixtu

11 Dec 16, 2022
Implementation of Ag-Grid component for Streamlit

streamlit-aggrid AgGrid is an awsome grid for web frontend. More information in https://www.ag-grid.com/. Consider purchasing a license from Ag-Grid i

Pablo Fonseca 556 Dec 31, 2022
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022