The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Overview

Overview

This is the code of our paper NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction. We use a sentence-level pre-training task NSP (Next Sentence Prediction) to realize prompt-learning and perform various downstream tasks, such as single sentence classification, sentence pair classification, coreference resolution, cloze-style task, entity linking, entity typing.

On the FewCLUE benchmark, our NSP-BERT outperforms other zero-shot methods (GPT-1-zero and PET-zero) on most of these tasks and comes close to the few-shot methods. We hope NSP-BERT can be an unsupervised tool that can assist other language tasks or models.

Guide

Section Description
Environment The required deployment environment
Downloads Download links for the models' checkpoints used by NSP-BERT
Use examples Learn to use NSP-BERT for different downstream tasks
Baselines Baseline results for several Chinese NLP datasets (partial)
Model Comparison Compare the models published in this repository
Strategy Details Some of the strategies used in the paper
Discussion Discussion and Discrimination for future work

Environment

The environments are as follows:

Python 3.6
bert4keras 0.10.6
tensorflow-gpu 1.15.0

Downloads

Models

We should dowmload the checkpoints of different models. The vocab.txt and the config.json are already in our repository.

Organization Model Name Model Parameters Download Linking Tips
Google BERT-Chinese L=12 H=769 A=12 102M Tensorflow
HFL BERT-wwm L=12 H=769 A=12 102M Tensorflow
BERT-wwm-ext L=12 H=769 A=12 102M Tensorflow
UER BERT-mixed-tiny L=3 H=384 A=6 14M Pytorch *
BERT-mixed-Small L=6 H=512 A=8 31M Pytorch *
BERT-mixed-Base L=12 H=769 A=12 102M Pytorch *
BERT-mixed-Large L=24 H=1024 A=16 327M Pytorch *

* We need to use UER's convert tool to convert UER pytorch to Original Tensorflow.

Datasets

We use FewCLUE datasets and DuEL2.0 (CCKS2020) in our experiments.

Datasets Download Links
FewCLUE https://github.com/CLUEbenchmark/FewCLUE/tree/main/datasets
DuEL2.0 (CCKS2020) https://aistudio.baidu.com/aistudio/competition/detail/83

Put the datasets into the NSP-BERT/datasets/.

Use examples

We can run individual python files in the project directly to evaluate our NSP-BERT.

NSP-BERT
    |- datasets
        |- clue_datasets
           |- ...
        |- DuEL 2.0
           |- dev.json
           |- kb.json
    |- models
        |- uer_mixed_corpus_bert_base
           |- bert_config.json
           |- vocab.txt
           |- bert_model.ckpt...
           |- ...
    |- nsp_bert_classification.py             # Single Sentence Classification
    |- nsp_bert_sentence_pair.py              # Sentence Pair Classification
    |- nsp_bert_cloze_style.py                # Cloze-style Task
    |- nsp_bert_coreference_resolution.py     # Coreference Resolution
    |- nsp_bert_entity_linking.py             # Entity Linking and Entity Typing
    |- utils.py
Python File Task Datasets
nsp_bert_classification.py Single Sentence Classification EPRSTMT, TNEWS, CSLDCP, IFLYTEK
nsp_bert_sentence_pair.py Sentence Pair Classification OCNLI, BUSTM, CSL
nsp_bert_cloze_style.py Cloze-style Task ChID
nsp_bert_coreference_resolution.py Coreference Resolution CLUEWSC
nsp_bert_entity_linking.py Entity Linking and Entity Typing DuEL2.0

Baselines

Reference FewCLUE, we choos 3 training scenarios, fine-tuning, few-shot and zero-shot. The baselines use Chineses-RoBERTa-Base and Chinses-GPT-1 as the backbone model.

Methods

Scenarios Methods
Fine-tuning BERT, RoBERTa
Few-Shot PET, ADAPET, P-tuning, LM-BFF, EFL
Zero-Shot GPT-zero, PET-zero

Downloads

Organization Model Name Model Parameters Download Linking
huawei-noah Chinese GPT L=12 H=769 A=12 102M Tensorflow
HFL RoBERTa-wwm-ext L=12 H=769 A=12 102M Tensorflow

Model Comparison


Main Results

Strategy Details


Strategies

Discussion

  • Sincce NSP-BERT is a sentence-level prompt-learning model, it is significantly superior to GPT-zero and PET-zero in terms of Single Sentence Classification tasks (TNEWS, CSLDCP and IFLYTEK). At the same time, it can solve the Entity Linking task (DuEL2.0), and the model is not limited by the non-fixed-length entity description, which GPT-zero and PET-zero cannot do this.
  • However, it doesn't work as well on Token-Level tasks, such as Cloze-style task and Entity Typing.
  • In future work, it is essential to extend NSP-BERT to the few-shot scenario.
Owner
Sun Yi
PhD student in computer science
Sun Yi
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
Real-world Anomaly Detection in Surveillance Videos- pytorch Re-implementation

Real world Anomaly Detection in Surveillance Videos : Pytorch RE-Implementation This repository is a re-implementation of "Real-world Anomaly Detectio

seominseok 62 Dec 08, 2022
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
A PyTorch toolkit for 2D Human Pose Estimation.

PyTorch-Pose PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface

Wei Yang 1.1k Dec 30, 2022
最新版本yolov5+deepsort目标检测和追踪,支持5.0版本可训练自己数据集

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

422 Dec 30, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
duralava is a neural network which can simulate a lava lamp in an infinite loop.

duralava duralava is a neural network which can simulate a lava lamp in an infinite loop. Example This is not a real lava lamp but a "fake" one genera

Maximilian Bachl 87 Dec 20, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023