Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Overview

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers

Description:

Model Optimizer in Intel(r) OpenVINO(tm) toolkit supports model division function. User can specify the region in the model to convert by specifying entry point and exit point with --input and --output options respectively.
The expected usage of those options are:

  • Excluding unnecessary layers: Removing non-DL related layers (such as JPEG decode) and layers not required for inferencing (such as accuracy metrics calculation)
  • Load balancing: Divide a model into multiple parts and cascade them to get the final inferencing result. Each individual part can be run on different device or different timing.
  • Access to the intermediate result: Divide a model and get the intermediate feature data to check the model integrity or for the other purposes.
  • Exclude non-supported layers: Convert the model without OpenVINO non-supprted layers. Divide the model and skip non-supported layers to get the IR models. User needs to perform the equivalent processing for the excluded layers to get the correct inferencing result.

This project demonstrates how to divide a DL model, and fill the hole for skipped leyers.
The project includes Python and C++ implementations of naive 2D convolution layer to perform the Conv2D task which was supposed to have done by the skipped layer. This could be a good reference when you need to implement a custom layer function to your project but don't want to develop full-blown OpenVINO custom layers due to some restrictions such as development time.
In this project, we will use a simple CNN classification model trained with MNIST dataset and demonstrate the way to divide the model with skipping a layer (on purpose) and use a simple custom layer to cover the data processing for the skipped layer.

image

Prerequisites:

  • TensorFlow 2.x
  • OpenVINO 2021.4 (2021.x may work)

How to train the model and create a trained model

You can train the model by just kicking the training.py script. training.py will use keras.datasets.mnist as the training and validation dataset and train the model, and then save the trained model in SavedModel format.
training.py also generates weights.npy file that contains the weight and bias data of target_conv_layer layer. This weight and bias data will be used by the special made Conv2D layer.
Since the model we use is tiny, it will take just a couple of minutes to complete.

python3 training.py

How to convert a TF trained model into OpenVINO IR model format

Model Optimizer in OpenVINO converts TF (savedmodel) model into OpenVINO IR model.
Here's a set of script to convert the model for you.

script description
convert-normal.sh Convert entire model and generate single IR model file (no division)
convert-divide.sh Divide the input model and output 2 IR models. All layers are still contained (no skipped layers)
convert-divide-skip.sh Divide the input model and skip 'target_conv_layer'
  • The converted models can be found in ./models folder.

Tip to find the correct node name for Model Optimizer

Model optimizer requires MO internal networkx graph node name to specify --input and --output nodes. You can modify the model optimizer a bit to have it display the list of networkx node names. Add 3 lines on the very bottom of the code snnipet below and run the model optimizer.

mo/utils/class_registration.py

def apply_replacements_list(graph: Graph, replacers_order: list):
    """
    Apply all transformations from replacers_order
    """
    for i, replacer_cls in enumerate(replacers_order):
        apply_transform(
            graph=graph,
            replacer_cls=replacer_cls,
            curr_transform_num=i,
            num_transforms=len(replacers_order))
        # Display name of available nodes after the 'loader' stage
        if 'LoadFinish' in str(replacer_cls):
            for node in graph.nodes():
                print(node)

You'll see something like this. You need to use one of those node names for --input and --output options in MO.

conv2d_input
Func/StatefulPartitionedCall/input/_0
unknown
Func/StatefulPartitionedCall/input/_1
StatefulPartitionedCall/sequential/conv2d/Conv2D/ReadVariableOp
StatefulPartitionedCall/sequential/conv2d/Conv2D
   :   (truncated)   :
StatefulPartitionedCall/sequential/dense_1/BiasAdd/ReadVariableOp
StatefulPartitionedCall/sequential/dense_1/BiasAdd
StatefulPartitionedCall/sequential/dense_1/Softmax
StatefulPartitionedCall/Identity
Func/StatefulPartitionedCall/output/_11
Func/StatefulPartitionedCall/output_control_node/_12
Identity
Identity56

How to infer with the models on OpenVINO

Several versions of scripts are available for the inference testing.
Those test programs will do inference 10,000 times with the MNIST validation dataset. Test program displays '.' when inference result is correct and 'X' when it's wrong. Performance numbers are measured from the start of 10,000 inferences to the end of all inferences. So, it is including loop overhead, pre/post processing time and so on.

script description (reference execution time, Core i7-8665U)
inference.py Use simgle, monolithic IR model and run inference 3.3 sec
inference-div.py Take 2 divided IR models and run inference. 2 models will be cascaded. 5.3 sec(*1)
inference-skip-python.py Tak2 2 divided IR models which excluded the 'target_conv_layer'. Program is including a Python version of Conv2D and perform convolution for 'target_conv_layer'. VERY SLOW. 4338.6 sec
inference-skip-cpp.py Tak2 2 divided IR models which excluded the 'target_conv_layer'. Program imports a Python module written in C++ which includes a C++ version of Conv2D. Reasonably fast. Conv2D Python extension module is required. Please refer to the following section for details. 10.8 sec

Note 1: This model is quite tiny and light-weight. OpenVINO can run this model in <0.1msec on Core i7-8665U CPU. The inferencing overhead introduced by dividing the model is noticeable but when you use heavy model, this penalty might be negligible.

How to build the Conv2D C++ Python extnsion module

You can build the Conv2D C++ Python extension module by running build.sh or build.bat.
myLayers.so or myLayers.pyd will be generated and copied to the current directory after a successful build.

How to run draw-and-infer demo program

Here's a simple yet bit fun demo application for MNIST CNN. You can draw a number on the screen by mouse or finger-tip and you'll see the real-time inference result. Right-click will clear the screen for another try. Several versions are available.

script description
draw-and-infer.py Use the monolithic IR model
draw-and-infer-div.py Use divided IR models
draw-and-infer-skip-cpp.py Use divided IR models which excluded 'target_conv_layer'. Conv2D Python extension is requird.

draw-and-infer

Tested environment

  • Windows 10 + VS2019 + OpenVINO 2021.4
  • Ubuntu 20.04 + OpenVINO 2021.4
Owner
Yasunori Shimura
Yasunori Shimura
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers This is the repo used for human motion prediction with non-autoregress

Idiap Research Institute 26 Dec 14, 2022
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Phillip Lippe 1.1k Jan 07, 2023
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
Library for converting from RGB / GrayScale image to base64 and back.

Library for converting RGB / Grayscale numpy images from to base64 and back. Installation pip install -U image_to_base_64 Conversion RGB to base 64 b

Vladimir Iglovikov 16 Aug 28, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe

Jianquan Ye 298 Dec 21, 2022
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021